1887

Abstract

The Wzx/Wzy-dependent pathway is the predominant pathway for O-antigen production in Gram-negative bacteria. The O-antigen repeat unit (O unit) is an oligosaccharide that is assembled at the cytoplasmic face of the membrane on undecaprenyl pyrophosphate. Wzx then flips it to the periplasmic face for polymerization by Wzy, which adds an O unit to the reducing end of a growing O-unit polymer in each round of polymerization. Wzx and Wzy both exhibit enormous sequence diversity. It has recently been shown that, contrary to earlier reports, the efficiency of diverse Wzx forms can be significantly reduced by minor structural variations to their native O-unit substrate. However, details of Wzy substrate specificity remain unexplored. The closely related galactose-initiated O antigens present a rare opportunity to address these matters. The D1 and D2 O units differ only in an internal mannose–rhamnose linkage, and D3 expresses both in the same chain. D1 and D2 polymerases were shown to be specific for O units with their respective α or β configuration for the internal mannose–rhamnose linkage. The Wzy encoded by D3 gene cluster polymerizes only D1 O units, and deleting the gene does not eliminate polymeric O antigen, both observations indicating the presence of an additional gene. The levels of Wzx and Wzy substrate specificity will affect the ease with which new O units can evolve, and also our ability to modify O antigens, capsules or secreted polysaccharides by glyco-engineering, to generate novel polysaccharides, as the Wzx/Wzy-dependent pathway is responsible for much of the diversity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000113
2015-08-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1639.html?itemId=/content/journal/micro/10.1099/mic.0.000113&mimeType=html&fmt=ahah

References

  1. Bastin D.A., Romana L.K., Reeves P.R.. ( 1991;). Molecular cloning and expression in Escherichia coli K-12 of the rfb gene cluster determining the O antigen of an E. coli O111 strain. Mol Microbiol 5: 2223–2231 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bastin D.A., Stevenson G., Brown P.K., Haase A., Reeves P.R.. ( 1993;). Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. Mol Microbiol 7: 725–734 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bray D., Robbins P.W.. ( 1967;). The direction of chain growth in Salmonella anatum O-antigen biosynthesis. Biochem Biophys Res Commun 28: 334–339 [CrossRef] [PubMed].
    [Google Scholar]
  4. Brown P.K., Romans L.K., Reeves P.R.. ( 1991;). Cloning of the rfb gene cluster of a group C2 Salmonella strain: comparison with the rfb regions of groups B and D. Mol Microbiol 5: 1873–1881 [CrossRef] [PubMed].
    [Google Scholar]
  5. Curd H., Liu D., Reeves P.R.. ( 1998;). Relationships among the O-antigen gene clusters of Salmonella enterica groups B, D1, D2, and D3. J Bacteriol 180: 1002–1007 [PubMed].
    [Google Scholar]
  6. Daniels C., Vindurampulle C., Morona R.. ( 1998;). Overexpression and topology of the Shigella flexneri O-antigen polymerase (Rfc/Wzy). Mol Microbiol 28: 1211–1222 [CrossRef] [PubMed].
    [Google Scholar]
  7. Datsenko K.A., Wanner B.L.. ( 2000;). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97: 6640–6645 [CrossRef] [PubMed].
    [Google Scholar]
  8. Duerr C.U., Zenk S.F., Chassin C., Pott J., Gütle D., Hensel M., Hornef M.W.. ( 2009;). O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells. PLoS Pathog 5: e1000567 [CrossRef] [PubMed].
    [Google Scholar]
  9. Enright A.J., Van Dongen S., Ouzounis C.A.. ( 2002;). An efficient algorithm for large-scale detection of protein families. Nucleic Acids Res 30: 1575–1584 [CrossRef] [PubMed].
    [Google Scholar]
  10. Faridmoayer A., Fentabil M.A., Haurat M.F., Yi W., Woodward R., Wang P.G., Feldman M.F.. ( 2008;). Extreme substrate promiscuity of the Neisseria oligosaccharyl transferase involved in protein O-glycosylation. J Biol Chem 283: 34596–34604 [CrossRef] [PubMed].
    [Google Scholar]
  11. Hellerqvist C.G., Lindberg B., Svensson S., Holme T., Lindberg A.A.. ( 1969;). Structural studies on the O-specific side-chains of the cell-wall lipopolysaccharide from Salmonella typhimurium LT2. Carbohydr Res 9: 237–241 [CrossRef].
    [Google Scholar]
  12. Hong Y., Reeves P.R.. ( 2014;). Diversity of O-antigen repeat unit structures can account for the substantial sequence variation of Wzx translocases. J Bacteriol 196: 1713–1722 [CrossRef] [PubMed].
    [Google Scholar]
  13. Hong Y., Cunneen M.M., Reeves P.R.. ( 2012;). The Wzx translocases for Salmonella enterica O-antigen processing have unexpected serotype specificity. Mol Microbiol 84: 620–630 [CrossRef] [PubMed].
    [Google Scholar]
  14. Islam S.T., Lam J.S.. ( 2014;). Synthesis of bacterial polysaccharides via the Wzx/Wzy-dependent pathway. Can J Microbiol 60: 697–716 [CrossRef] [PubMed].
    [Google Scholar]
  15. Islam S.T., Taylor V.L., Qi M., Lam J.S.. ( 2010;). Membrane topology mapping of the O-antigen flippase (Wzx), polymerase (Wzy), and ligase (WaaL) from Pseudomonas aeruginosa PAO1 reveals novel domain architectures. MBio 1: e00189-10 [CrossRef] [PubMed].
    [Google Scholar]
  16. Islam S.T., Gold A.C., Taylor V.L., Anderson E.M., Ford R.C., Lam J.S.. ( 2011;). Dual conserved periplasmic loops possess essential charge characteristics that support a catch-and-release mechanism of O-antigen polymerization by Wzy in Pseudomonas aeruginosa PAO1. J Biol Chem 286: 20600–20605 [CrossRef] [PubMed].
    [Google Scholar]
  17. Islam S.T., Huszczynski S.M., Nugent T., Gold A.C., Lam J.S.. ( 2013;). Conserved-residue mutations in Wzy affect O-antigen polymerization and Wzz-mediated chain-length regulation in Pseudomonas aeruginosa PAO1. Sci Rep 3: 3441 [CrossRef] [PubMed].
    [Google Scholar]
  18. Kalynych S., Morona R., Cygler M.. ( 2014;). Progress in understanding the assembly process of bacterial O-antigen. FEMS Microbiol Rev 38: 1048–1065 [CrossRef] [PubMed].
    [Google Scholar]
  19. King J.D., Berry S., Clarke B.R., Morris R.J., Whitfield C.. ( 2014;). Lipopolysaccharide O antigen size distribution is determined by a chain extension complex of variable stoichiometry in Escherichia coli O9a. Proc Natl Acad Sci U S A 111: 6407–6412 [CrossRef] [PubMed].
    [Google Scholar]
  20. Larue K., Ford R.C., Willis L.M., Whitfield C.. ( 2011;). Functional and structural characterization of polysaccharide co-polymerase proteins required for polymer export in ATP-binding cassette transporter-dependent capsule biosynthesis pathways. J Biol Chem 286: 16658–16668 [CrossRef] [PubMed].
    [Google Scholar]
  21. Lee S.J., Romana L.K., Reeves P.R.. ( 1992;). Cloning and structure of group C1 O antigen (rfb gene cluster) from Salmonella enterica serovar montevideo. J Gen Microbiol 138: 305–312 [CrossRef] [PubMed].
    [Google Scholar]
  22. Liu D., Haase A.M., Lindqvist L., Lindberg A.A., Reeves P.R.. ( 1993;). Glycosyl transferases of O-antigen biosynthesis in Salmonella enterica: identification and characterization of transferase genes of groups B, C2, and E1. J Bacteriol 175: 3408–3413 [PubMed].
    [Google Scholar]
  23. Liu B., Knirel Y.A., Feng L., Perepelov A.V., Senchenkova S.N., Reeves P.R., Wang L.. ( 2014;). Structural diversity in Salmonella O antigens and its genetic basis. FEMS Microbiol Rev 38: 56–89 [CrossRef] [PubMed].
    [Google Scholar]
  24. Liu M.A., Stent T.L., Hong Y., Reeves P.R.. ( 2015;). Inefficient translocation of a truncated O unit by a Salmonella Wzx affects both O-antigen production and cell growth. FEMS Microbiol Lett 362: fnv053 [CrossRef] [PubMed].
    [Google Scholar]
  25. Mäkelä P.H.. ( 1965;). Inheritance of the O antigens of Salmonella groups B and D. J Gen Microbiol 41: 57–66 [CrossRef] [PubMed].
    [Google Scholar]
  26. Mäkelä P.H., Stocker B.A.D.. ( 1984;). Genetics of lipopolysaccharide. . In Handbook of Endotoxin, pp. 59–137. Edited by Rietschel E. T.. Amsterdam: Elsevier;.
    [Google Scholar]
  27. Manning P.A., Heuzenroeder M.W., Yeadon J., Leavesley D.I., Reeves P.R., Rowley D.. ( 1986;). Molecular cloning and expression in Escherichia coli K-12 of the O antigens of the Inaba and Ogawa serotypes of the Vibrio cholerae O1 lipopolysaccharides and their potential for vaccine development. Infect Immun 53: 272–277 [PubMed].
    [Google Scholar]
  28. McGrath B.C., Osborn M.J.. ( 1991;). Localization of the terminal steps of O-antigen synthesis in Salmonella typhimurium. J Bacteriol 173: 649–654 [PubMed].
    [Google Scholar]
  29. Murray G.L., Attridge S.R., Morona R.. ( 2003;). Regulation of Salmonella typhimurium lipopolysaccharide O antigen chain length is required for virulence; identification of FepE as a second Wzz. Mol Microbiol 47: 1395–1406 [CrossRef] [PubMed].
    [Google Scholar]
  30. Murray G.L., Attridge S.R., Morona R.. ( 2005;). Inducible serum resistance in Salmonella typhimurium is dependent on wzz(fepE)-regulated very long O antigen chains. Microbes Infect 7: 1296–1304 [CrossRef] [PubMed].
    [Google Scholar]
  31. Nath P., Morona R.. ( 2015;). Mutational analysis of the major periplasmic loops of Shigella flexneri Wzy: identification of the residues affecting O antigen modal chain length control, and Wzz-dependent polymerization activity. Microbiology 161: 774–785 [CrossRef] [PubMed].
    [Google Scholar]
  32. Nath P., Tran E.N., Morona R.. ( 2015;). Mutational analysis of the Shigella flexneri O-antigen polymerase Wzy: identification of Wzz-dependent Wzy mutants. J Bacteriol 197: 108–119 [CrossRef] [PubMed].
    [Google Scholar]
  33. Neal B.L., Brown P.K., Reeves P.R.. ( 1993;). Use of Salmonella phage P22 for transduction in Escherichia coli. J Bacteriol 175: 7115–7118 [PubMed].
    [Google Scholar]
  34. Nghiêm H.O.. ( 1971;). [Presence of 2 polysaccharides with different immunological specificities in Salmonella zuerich (1, 9, 12, (46), 27)]. C R Acad Sci Hebd Seances Acad Sci D 273: 257–259 (in French).
    [Google Scholar]
  35. Nghiêm H.O.. ( 1977;). Separation of two Salmonella O-antigen polysaccharides by means of a glutaraldehyde-concanavalin-A polymer. Primary studies on the separated fractions. Eur J Biochem 75: 613–618 [CrossRef] [PubMed].
    [Google Scholar]
  36. Nghiêm H.O., Staub A.M.. ( 1975;). Molecular immunological heterogeneity of the Salmonella zuerich [1, 9, 12, (46), 27] cell-wall polysaccharides. Carbohydr Res 40: 153–169 [CrossRef] [PubMed].
    [Google Scholar]
  37. Nghiêm H.O., Staub A.M., Galanos C., Lüderitz O.. ( 1982;). Distribution and antigenic properties of the O-determinants of Salmonella zuerich (1, 9, 27, 46). Eur J Biochem 125: 431–436 [CrossRef] [PubMed].
    [Google Scholar]
  38. Nghiêm H.O., Himmelspach K., Mayer H.. ( 1992;). Immunochemical and structural analysis of the O polysaccharides of Salmonella zuerich [1, 9, 27, (46)]. J Bacteriol 174: 1904–1910 [CrossRef] [PubMed].
    [Google Scholar]
  39. Nurminen M., Hellerqvist C.G., Valtonen V.V., Mäkelä P.H.. ( 1971;). The smooth lipopolysaccharide character of 1, 4, (5), 12 and 1, 9, 12 transductants formed as hybrids between groups B and D of Salmonella. Eur J Biochem 22: 500–505 [CrossRef] [PubMed].
    [Google Scholar]
  40. Nyman K., Plosila M., Howden L., Mäkelä P.H.. ( 1979;). Genetic determination of lipopolysaccharide: locus of O-specific unit polymerase in group E of Salmonella. Zbl Bakt Hyg. I Abt Orig A 243: 355–362.
    [Google Scholar]
  41. Osborn M.J., Weiner I.M.. ( 1968;). Biosynthesis of a bacterial lipopolysaccharide. VI. Mechanism of incorporation of abequose into the O-antigen of Salmonella typhimurium. J Biol Chem 243: 2631–2639 [PubMed].
    [Google Scholar]
  42. Reeves P.R., Cunneen M.M.. ( 2009;). Biosynthesis of O-antigen chains and assembly. . In Microbial Glycobiology: Structures, Relevance and Applications, pp. 319–335. Edited by Moran A. P., Holst O., Brennan P. J., von Itzstein M.. Amsterdam: Elsevier;.
    [Google Scholar]
  43. Reeves P.R., Cunneen M.M., Liu B., Wang L.. ( 2013;). Genetics and evolution of the Salmonella galactose-initiated set of O antigens. PLoS One 8: e69306 [CrossRef] [PubMed].
    [Google Scholar]
  44. Rick P.D., Osborn M.J.. ( 1972;). Isolation of a mutant of Salmonella typhimurium dependent on d-arabinose-5-phosphate for growth and synthesis of 3-deoxy-d-mannooctulosonate (ketodeoxyoctonate). Proc Natl Acad Sci U S A 69: 3756–3760 [CrossRef] [PubMed].
    [Google Scholar]
  45. Rick P.D., Wolski S., Barr K., Ward S., Ramsay-Sharer L.. ( 1988;). Accumulation of a lipid-linked intermediate involved in enterobacterial common antigen synthesis in Salmonella typhimurium mutants lacking dTDP-glucose pyrophosphorylase. J Bacteriol 170: 4008–4014 [PubMed].
    [Google Scholar]
  46. Robbins P.W., Bray D., Dankert B.M., Wright A.. ( 1967;). Direction of chain growth in polysaccharide synthesis. Science 158: 1536–1542 [CrossRef] [PubMed].
    [Google Scholar]
  47. Silhavy T.J., Kahne D., Walker S.. ( 2010;). The bacterial cell envelope. Cold Spring Harb Perspect Biol 2: a000414 [CrossRef] [PubMed].
    [Google Scholar]
  48. Takeshita M., Mäkelä P.H.. ( 1971;). Glucosylation of lipopolysaccharide in Salmonella: biosynthesis of O antigen factor 122. 3. The presence of 122 determinants in haptenic polysaccharides. J Biol Chem 246: 3920–3927 [PubMed].
    [Google Scholar]
  49. Wacker M., Feldman M.F., Callewaert N., Kowarik M., Clarke B.R., Pohl N.L., Hernandez M., Vines E.D., Valvano M.A., other authors. ( 2006;). Substrate specificity of bacterial oligosaccharyltransferase suggests a common transfer mechanism for the bacterial and eukaryotic systems. Proc Natl Acad Sci U S A 103: 7088–7093 [CrossRef] [PubMed].
    [Google Scholar]
  50. Wang L., Wang Q., Reeves P.R.. ( 2010;). The variation of O antigens in gram-negative bacteria. Subcell Biochem 53: 123–152 [CrossRef] [PubMed].
    [Google Scholar]
  51. Whitfield C.. ( 2006;). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 75: 39–68 [CrossRef] [PubMed].
    [Google Scholar]
  52. Yuasa R., Levinthal M., Nikaido H.. ( 1969;). Biosynthesis of cell wall lipopolysaccharide in mutants of Salmonella. V. A mutant of Salmonella typhimurium defective in the synthesis of cytidine diphosphoabequose. J Bacteriol 100: 433–444 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000113
Loading
/content/journal/micro/10.1099/mic.0.000113
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error