1887

Abstract

is an oral bacterium that has been shown to be associated with inflammatory bowel disease (IBD). In this study we examined clusters of oral strains isolated from patients with IBD and healthy controls by analysing six housekeeping genes. In addition, we investigated the population structure of strains. Whether oral and enteric strains form distinct clusters based on the sequences of these housekeeping genes was also investigated. The oral strains were found to contain two genomospecies, which belong to the two genomospecies previously found in enteric strains. clusters formed based on the sequences of a single gene were the same as that formed by using previously reported MLST schemes. The analysis of combined oral and enteric strains found that enteric strains did not form distinct clusters. Genetic structure analysis identified five subpopulations of and showed that genetic recombination between strains was common. However, genetic recombination was significantly less in oral strains isolated from patients with IBD than from healthy individuals. Previously reported oral and enteric intestinal epithelial invasive strains were in cluster II and subpopulation III. Furthermore, this study shows that there are no distinct enteric strain clusters or subpopulations.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000112
2015-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1600.html?itemId=/content/journal/micro/10.1099/mic.0.000112&mimeType=html&fmt=ahah

References

  1. Aabenhus R. , On S.L.W. , Siemer B.L. , Permin H. , Andersen L.P. . ( 2005;). Delineation of Campylobacter concisus genomospecies by amplified fragment length polymorphism analysis and correlation of results with clinical data. J Clin Microbiol 43: 5091–5096 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bastyns K. , Chapelle S. , Vandamme P. , Goossens H. , De Wachter R. . ( 1995;). Specific detection of Campylobacter concisus by PCR amplification of 23S rDNA areas. Mol Cell Probes 9: 247–250 [CrossRef] [PubMed].
    [Google Scholar]
  3. Deshpande N.P. , Kaakoush N.O. , Wilkins M.R. , Mitchell H.M. . ( 2013;). Comparative genomics of Campylobacter concisus isolates reveals genetic diversity and provides insights into disease association. BMC Genomics 14: 585 [CrossRef] [PubMed].
    [Google Scholar]
  4. Guccione E. , Leon-Kempis M.R. , Pearson B.M. , Hitchin E. , Mulholland F. , van Diemen P.M. , Stevens M.P. , Kelly D.J. . ( 2008;). Amino acid-dependent growth of Campylobacter jejuni: key roles for aspartase (AspA) under microaerobic and oxygen-limited conditions and identification of AspB (Cj0762), essential for growth on glutamate. Mol Microbiol 69: 77–93 [CrossRef] [PubMed].
    [Google Scholar]
  5. Huson D.H. , Bryant D. . ( 2006;). Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23: 254–267 [CrossRef] [PubMed].
    [Google Scholar]
  6. Ismail Y. , Mahendran V. , Octavia S. , Day A.S. , Riordan S.M. , Grimm M.C. , Lan R. , Lemberg D. , Tran T.A.T. , Zhang L. . ( 2012;). Investigation of the enteric pathogenic potential of oral Campylobacter concisus strains isolated from patients with inflammatory bowel disease. PLoS One 7: e38217 [CrossRef] [PubMed].
    [Google Scholar]
  7. Ismail Y. , Lee H. , Riordan S.M. , Grimm M.C. , Zhang L. . ( 2013;). The effects of oral and enteric Campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS One 8: e56888 [CrossRef] [PubMed].
    [Google Scholar]
  8. Istivan T.S. , Coloe P.J. , Fry B.N. , Ward P. , Smith S.C. . ( 2004;). Characterization of a haemolytic phospholipase A(2) activity in clinical isolates of Campylobacter concisus . J Med Microbiol 53: 483–493 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kalischuk L.D. , Inglis G.D. . ( 2011;). Comparative genotypic and pathogenic examination of Campylobacter concisus isolates from diarrheic and non-diarrheic humans. BMC Microbiol 11: 53 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kamma J.J. , Diamanti-Kipioti A. , Nakou M. , Mitsis F.J. . ( 2000;). Profile of subgingival microbiota in children with mixed dentition. Oral Microbiol Immunol 15: 103–111 [CrossRef] [PubMed].
    [Google Scholar]
  11. Lastovica A.J. . ( 2006;). Emerging Campylobacter spp.: the tip of the iceberg. Clin Microbiol Newsl 28: 49–56 [CrossRef].
    [Google Scholar]
  12. Lastovica A.J. , On S.L.W. , Zhang L. . ( 2013;). The Family of Campylobacteraceae . . In The Prokaryotes, pp. 307–333. Edited by Rosenberg E. . , 4th edn. Berlin: Springer;.
    [Google Scholar]
  13. Lee H. , Ma R. , Grimm M.C. , Riordan S.M. , Lan R. , Zhong L. , Raftery M. , Zhang L. . ( 2014;). Examination of the anaerobic growth of Campylobacter concisus strains. Int J Microbiol 2014: 476047.[CrossRef]
    [Google Scholar]
  14. Lindblom G.-B. , Sjögren E. , Hansson-Westerberg J. , Kaijser B. . ( 1995;). Campylobacter upsaliensis C. sputorum sputorum C. concisus as common causes of diarrhoea in Swedish children. Scand J Infect Dis 27: 187–188 [CrossRef] [PubMed].
    [Google Scholar]
  15. Mahendran V. , Riordan S.M. , Grimm M.C. , Tran T.A.T. , Major J. , Kaakoush N.O. , Mitchell H. , Zhang L. . ( 2011;). Prevalence of Campylobacter species in adult Crohn's disease and the preferential colonization sites of Campylobacter species in the human intestine. PLoS One 6: e25417 [CrossRef] [PubMed].
    [Google Scholar]
  16. Mahendran V. , Tan Y.S. , Riordan S.M. , Grimm M.C. , Day A.S. , Lemberg D.A. , Octavia S. , Lan R. , Zhang L. . ( 2013;). The prevalence and polymorphisms of zonula occluden toxin gene in multiple Campylobacter concisus strains isolated from saliva of patients with inflammatory bowel disease and controls. PLoS One 8: e75525 [CrossRef] [PubMed].
    [Google Scholar]
  17. Man S.M. , Zhang L. , Day A.S. , Leach S.T. , Lemberg D.A. , Mitchell H. . ( 2010a;). Campylobacter concisus and other Campylobacter species in children with newly diagnosed Crohn's disease. Inflamm Bowel Dis 16: 1008–1016 [CrossRef] [PubMed].
    [Google Scholar]
  18. Man S.M. , Kaakoush N.O. , Leach S.T. , Nahidi L. , Lu H.K. , Norman J. , Day A.S. , Zhang L. , Mitchell H.M. . ( 2010b;). Host attachment, invasion, and stimulation of proinflammatory cytokines by Campylobacter concisus and other non-Campylobacter jejuni Campylobacter species. J Infect Dis 202: 1855–1865 [CrossRef] [PubMed].
    [Google Scholar]
  19. Matsheka M.I. , Elisha B.G. , Lastovica A.L. , On S.L.W. . ( 2002;). Genetic heterogeneity of Campylobacter concisus determined by pulsed field gel electrophoresis-based macrorestriction profiling. FEMS Microbiol Lett 211: 17–22 [CrossRef] [PubMed].
    [Google Scholar]
  20. Miller W.G. , Chapman M.H. , Yee E. , On S.L.W. , McNulty D.K. , Lastovica A.J. , Carroll A.M. , McNamara E.B. , Duffy G. , Mandrell R.E. . ( 2012;). Multilocus sequence typing methods for the emerging Campylobacter species C. hyointestinalis C. lanienae C. sputorum C. concisus, and C. curvus . Front Cell Infect Microbiol 2: 45 [CrossRef] [PubMed].
    [Google Scholar]
  21. Mukhopadhya I. , Thomson J.M. , Hansen R. , Berry S.H. , El-Omar E.M. , Hold G.L. . ( 2011;). Detection of Campylobacter concisus and other Campylobacter species in colonic biopsies from adults with ulcerative colitis. PLoS One 6: e21490 [CrossRef] [PubMed].
    [Google Scholar]
  22. Nielsen H.L. , Nielsen H. , Ejlertsen T. , Engberg J. , Günzel D. , Zeitz M. , Hering N.A. , Fromm M. , Schulzke J.-D. , Bücker R. . ( 2011;). Oral and fecal Campylobacter concisus strains perturb barrier function by apoptosis induction in HT-29/B6 intestinal epithelial cells. PLoS One 6: e23858 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nielsen H.L. , Ejlertsen T. , Engberg J. , Nielsen H. . ( 2013;). High incidence of Campylobacter concisus in gastroenteritis in North Jutland, Denmark: a population-based study. Clin Microbiol Infect 19: 445–450 [CrossRef] [PubMed].
    [Google Scholar]
  24. On S.L.W. , Siemer B.L. , Brandt S.M. , Chung P. , Lastovica A.J. . ( 2013;). Characterisation of Campylobacter concisus strains from South Africa using amplified fragment length polymorphism (AFLP) profiling and a genomospecies specific polymerase chain reaction (PCR) assay: identification of novel genomospecies and correlation with clinical data. Afr J Microbiol Res 7: 1845–1851.
    [Google Scholar]
  25. Pritchard J.K. , Stephens M. , Donnelly P. . ( 2000;). Inference of population structure using multilocus genotype data. Genetics 155: 945–959 [PubMed].
    [Google Scholar]
  26. Sellars M.J. , Hall S.J. , Kelly D.J. . ( 2002;). Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-N-oxide, or dimethyl sulfoxide requires oxygen. J Bacteriol 184: 4187–4196 [CrossRef] [PubMed].
    [Google Scholar]
  27. Suzuki S. , Yamaguchi J. , Tokushige M. . ( 1973;). Studies on aspartase. I. Purification and molecular properties of aspartase from Escherichia coli . Biochim Biophys Acta321: 369–381.[CrossRef]
    [Google Scholar]
  28. Tamura K. , Daniel P. , Nicholas P. , Glen S. , Nei M. , Kumar S. . ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731–2739 [CrossRef] [PubMed].
    [Google Scholar]
  29. Tanner A.C. , Badger S. , Lai C.-H. , Listgarten M.A. , Visconti R.A. , Socransky S.S. . ( 1981;). Wolinella gen. nov., Wolinella succinogenes (Vibrio succinogenes Wolin et al.) comb. nov., and description of Bacteroides gracilis sp. nov., Wolinella recta sp. nov., Campylobacter concisus sp. nov., and Eikenella corrodens from humans with periodontal disease. Int J Syst Bacteriol 31: 432–445 [CrossRef].
    [Google Scholar]
  30. Vandamme P.D.F. , Paster B.J. , On S.L.W. . ( 2005;). Genus I. Campylobacter. . In Bergey's Manual of Systematic Bacteriology. pp. 1147–1160. Edited by Garrity G.M , Brenner D.J. , Krieg, & J.T. Staley N.R. . , 2nd edn.. Vol. 2. New York: Springer;.[CrossRef]
    [Google Scholar]
  31. Vandamme P. , Falsen E. , Pot B. , Hoste B. , Kersters K. , De Ley J. . ( 1989;). Identification of EF group 22 campylobacters from gastroenteritis cases as Campylobacter concisus . J Clin Microbiol 27: 1775–1781 [PubMed].
    [Google Scholar]
  32. Zhang L. , Man S.M. , Day A.S. , Leach S.T. , Lemberg D.A. , Dutt S. , Stormon M. , Otley A. , O'Loughlin E.V. , other authors . ( 2009;). Detection and isolation of Campylobacter species other than C. jejuni from children with Crohn's disease. J Clin Microbiol 47: 453–455 [CrossRef] [PubMed].
    [Google Scholar]
  33. Zhang L. , Budiman V. , Day A.S. , Mitchell H. , Lemberg D.A. , Riordan S.M. , Grimm M. , Leach S.T. , Ismail Y. . ( 2010;). Isolation and detection of Campylobacter concisus from saliva of healthy individuals and patients with inflammatory bowel disease. J Clin Microbiol 48: 2965–2967 [CrossRef].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000112
Loading
/content/journal/micro/10.1099/mic.0.000112
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error