1887

Abstract

Coordinated bacterial cell septation and cell wall biosynthesis require formation of protein complexes at the sites of division and elongation, in a temporally controlled manner. The protein players in these complexes remain incompletely understood in mycobacteria. Using and assays, we showed that Rv2147c (or SepF) of interacts with the principal driver of cytokinesis, FtsZ. SepF also interacts with itself both and . Amino acid residues 189A, 190K and 215F are required for FtsZ–SepF interaction, and are conserved across Gram-positive bacteria. Using as a surrogate system, we confirmed that is essential. Knockdown of SepF led to cell elongation, defective growth and failure of FtsZ to localize to the site of division, suggesting that SepF assists FtsZ localization at the site of division. Furthermore, SepF interacted with MurG, a peptidoglycan-synthesizing enzyme, both and , suggesting that SepF could serve as a link between cell division and peptidoglycan synthesis. SepF emerges as a newly identified essential component of the cell division complex in mycobacteria.

Erratum
This article contains a correction applying to the following content:
Corrigendum: Essential protein SepF of mycobacteria interacts with FtsZ and MurG to regulate cell growth and division
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000108
2015-08-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/8/1627.html?itemId=/content/journal/micro/10.1099/mic.0.000108&mimeType=html&fmt=ahah

References

  1. Adams D.W. , Errington J. . ( 2009;). Bacterial cell division: assembly, maintenance and disassembly of the Z ring. Nat Rev Microbiol 7: 642–653 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aldridge B.B. , Fernandez-Suarez M. , Heller D. , Ambravaneswaran V. , Irimia D. , Toner M. , Fortune S.M. . ( 2012;). Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 335: 100–104 [CrossRef] [PubMed].
    [Google Scholar]
  3. Boldrin F. , Casonato S. , Dainese E. , Sala C. , Dhar N. , Palù G. , Riccardi G. , Cole S.T. , Manganelli R. . ( 2010;). Development of a repressible mycobacterial promoter system based on two transcriptional repressors. Nucleic Acids Res 38: e134 [CrossRef] [PubMed].
    [Google Scholar]
  4. Carroll P. , Schreuder L.J. , Muwanguzi-Karugaba J. , Wiles S. , Robertson B.D. , Ripoll J. , Ward T.H. , Bancroft G.J. , Schaible U.E. , Parish T. . ( 2010;). Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. PLoS One 5: e9823 [CrossRef] [PubMed].
    [Google Scholar]
  5. Datta P. , Dasgupta A. , Bhakta S. , Basu J. . ( 2002;). Interaction between FtsZ and FtsW of Mycobacterium tuberculosis. J Biol Chem 277: 24983–24987 [CrossRef] [PubMed].
    [Google Scholar]
  6. Datta P. , Dasgupta A. , Singh A.K. , Mukherjee P. , Kundu M. , Basu J. . ( 2006;). Interaction between FtsW and penicillin-binding protein 3 (PBP3) directs PBP3 to mid-cell, controls cell septation and mediates the formation of a trimeric complex involving FtsZ, FtsW and PBP3 in mycobacteria. Mol Microbiol 62: 1655–1673 [CrossRef] [PubMed].
    [Google Scholar]
  7. Duman R. , Ishikawa S. , Celik I. , Strahl H. , Ogasawara N. , Troc P. , Löwe J. , Hamoen L.W. . ( 2013;). Structural and genetic analyses reveal the protein SepF as a new membrane anchor for the Z ring. Proc Natl Acad Sci U S A 110: E4601–E4610 [CrossRef] [PubMed].
    [Google Scholar]
  8. Dziadek J. , Rutherford S.A. , Madiraju M.V. , Atkinson M.A. , Rajagopalan M. . ( 2003;). Conditional expression of Mycobacterium smegmatis ftsZ, an essential cell division gene. Microbiology 149: 1593–1603 [CrossRef] [PubMed].
    [Google Scholar]
  9. Ebersbach G. , Galli E. , Møller-Jensen J. , Löwe J. , Gerdes K. . ( 2008;). Novel coiled-coil cell division factor ZapB stimulates Z ring assembly and cell division. Mol Microbiol 68: 720–735 [CrossRef] [PubMed].
    [Google Scholar]
  10. Errington J. , Daniel R.A. , Scheffers D.-J. . ( 2003;). Cytokinesis in bacteria. Microbiol Mol Biol Rev 67: 52–65 [CrossRef] [PubMed].
    [Google Scholar]
  11. Favini-Stabile S. , Contreras-Martel C. , Thielens N. , Dessen A. . ( 2013;). MreB and MurG as scaffolds for the cytoplasmic steps of peptidoglycan biosynthesis. Environ Microbiol 15: 3218–3228 [CrossRef] [PubMed].
    [Google Scholar]
  12. Geissler B. , Elraheb D. , Margolin W. . ( 2003;). A gain-of-function mutation in ftsA bypasses the requirement for the essential cell division gene zipA in Escherichia coli . Proc Natl Acad Sci U S A 100: 4197–4202 [CrossRef] [PubMed].
    [Google Scholar]
  13. Gueiros-Filho F.J. , Losick R. . ( 2002;). A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. Genes Dev 16: 2544–2556 [CrossRef] [PubMed].
    [Google Scholar]
  14. Gündog˘du M.E. , Kawai Y. , Pavlendova N. , Ogasawara N. , Errington J. , Scheffers D.J. , Hamoen L.W. . ( 2011;). Large ring polymers align FtsZ polymers for normal septum formation. EMBO J 30: 617–626 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hale C.A. , Rhee A.C. , de Boer P.A. . ( 2000;). ZipA-induced bundling of FtsZ polymers mediated by an interaction between C-terminal domains. J Bacteriol 182: 5153–5166 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hamoen L.W. , Meile J.C. , de Jong W. , Noirot P. , Errington J. . ( 2006;). SepF, a novel FtsZ-interacting protein required for a late step in cell division. Mol Microbiol 59: 989–999 [CrossRef] [PubMed].
    [Google Scholar]
  17. Hett E.C. , Chao M.C. , Deng L.L. , Rubin E.J. . ( 2008;). A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog 4: e1000001 [CrossRef] [PubMed].
    [Google Scholar]
  18. Hett E.C. , Chao M.C. , Rubin E.J. . ( 2010;). Interaction and modulation of two antagonistic cell wall enzymes of mycobacteria. PLoS Pathog 6: e1001020 [CrossRef] [PubMed].
    [Google Scholar]
  19. Huang K.H. , Durand-Heredia J. , Janakiraman A. . ( 2013;). FtsZ ring stability: of bundles, tubules, crosslinks, and curves. J Bacteriol 195: 1859–1868 [CrossRef] [PubMed].
    [Google Scholar]
  20. Ishikawa S. , Kawai Y. , Hiramatsu K. , Kuwano M. , Ogasawara N. . ( 2006;). A new FtsZ-interacting protein, YlmF, complements the activity of FtsA during progression of cell division in Bacillus subtilis . Mol Microbiol 60: 1364–1380 [CrossRef] [PubMed].
    [Google Scholar]
  21. Jensen S.O. , Thompson L.S. , Harry E.J. . ( 2005;). Cell division in Bacillus subtilis: FtsZ and FtsA association is Z-ring independent, and FtsA is required for efficient midcell Z-ring assembly. J Bacteriol 187: 6536–6544 [CrossRef] [PubMed].
    [Google Scholar]
  22. Kieser K.J. , Rubin E.J. . ( 2014;). How sisters grow apart: mycobacterial growth and division. Nat Rev Microbiol 12: 550–562 [CrossRef] [PubMed].
    [Google Scholar]
  23. Król E. , van Kessel S.P. , van Bezouwen L.S. , Kumar N. , Boekema E.J. , Scheffers D.J. . ( 2012;). Bacillus subtilis SepF binds to the C-terminus of FtsZ. PLoS One 7: e43293 [CrossRef] [PubMed].
    [Google Scholar]
  24. Kumar K. , Awasthi D. , Berger W.T. , Tonge P.J. , Slayden R.A. , Ojima I. . ( 2010;). Discovery of anti-TB agents that target the cell-division protein FtsZ. Future Med Chem 2: 1305–1323 [CrossRef] [PubMed].
    [Google Scholar]
  25. Livak K.J. , Schmittgen T.D. . ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2–ΔΔCT method. Methods 25: 402–408 [CrossRef] [PubMed].
    [Google Scholar]
  26. Ma X. , Ehrhardt D.W. , Margolin W. . ( 1996;). Colocalization of cell division proteins FtsZ and FtsA to cytoskeletal structures in living Escherichia coli cells by using green fluorescent protein. Proc Natl Acad Sci U S A 93: 12998–13003 [CrossRef] [PubMed].
    [Google Scholar]
  27. Marbouty M. , Saguez C. , Cassier-Chauvat C. , Chauvat F. . ( 2009;). Characterization of the FtsZ-interacting septal proteins SepF and Ftn6 in the spherical-celled Cyanobacteriumsynechocystis strain PCC 6803.. J Bacteriol 191: 6178–6185 [CrossRef] [PubMed].
    [Google Scholar]
  28. Mengin-Lecreulx D. , Texier L. , Rousseau M. , van Heijenoort J. . ( 1991;). The murG gene of Escherichia coli codes for the UDP-N-acetylglucosamine: N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase involved in the membrane steps of peptidoglycan synthesis. J Bacteriol 173: 4625–4636 [PubMed].
    [Google Scholar]
  29. Meniche X. , Otten R. , Siegrist M.S. , Baer C.E. , Murphy K.C. , Bertozzi C.R. , Sassetti C.M. . ( 2014;). Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc Natl Acad Sci U S A 111: E3243–E3251 [CrossRef] [PubMed].
    [Google Scholar]
  30. Mohammadi T. , Karczarek A. , Crouvoisier M. , Bouhss A. , Mengin.-Lecreulx. D. , den Blaauwen T. . ( 2007;). The essential peptidoglycan glycosyltransferease MurG forms a complex with protein involved in lateral envelope growth as well as with proteins involved in cell division in Escherichia coli. Mol Microbiol 65: 1106–1121 [PubMed].[CrossRef]
    [Google Scholar]
  31. Parish T. , Stoker N.G. . ( 2000;). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. Microbiology 146: 1969–1975 [PubMed].
    [Google Scholar]
  32. Pichoff S. , Lutkenhaus J. . ( 2002;). Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli . EMBO J 21: 685–693 [CrossRef] [PubMed].
    [Google Scholar]
  33. Plocinski P. , Arora N. , Sarva K. , Blaszczyk E. , Qin H. , Das N. , Plocinska R. , Ziolkiewicz M. , Dziadek J. , other authors . ( 2012;). Mycobacterium tuberculosis CwsA interacts with CrgA and Wag31, and the CrgA–CwsA complex is involved in peptidoglycan synthesis and cell shape determination. J Bacteriol 194: 6398–6409 [CrossRef] [PubMed].
    [Google Scholar]
  34. Rothfield L. , Taghbalout A. , Shih Y.L. . ( 2005;). Spatial control of bacterial division-site placement. Nat Rev Microbiol 3: 959–968 [CrossRef] [PubMed].
    [Google Scholar]
  35. Singh A. , Mai D. , Kumar A. , Steyn A.J.C. . ( 2006;). Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association. Proc Natl Acad Sci U S A 103: 11346–11351 [CrossRef] [PubMed].
    [Google Scholar]
  36. Singh B. , Nitharwal R.G. , Ramesh M. , Pettersson B.M.F. , Kirsebom L.A. , Dasgupta S. . ( 2013;). Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol Microbiol 88: 64–76 [CrossRef] [PubMed].
    [Google Scholar]
  37. Snapper S.B. , Melton R.E. , Mustafa S. , Kieser T. , Jacobs W.R. Jr . ( 1990;). Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis . Mol Microbiol 4: 1911–1919 [CrossRef] [PubMed].
    [Google Scholar]
  38. Song H. , Sandie R. , Wang Y. , Andrade-Navarro M.A. , Niederweis M. . ( 2008;). Identification of outer membrane proteins of Mycobacterium tuberculosis . Tuberculosis (Edinb) 88: 526–544 [CrossRef] [PubMed].
    [Google Scholar]
  39. Thanky N.R. , Young D.B. , Robertson B.D. . ( 2007;). Unusual features of the cell cycle in mycobacteria: polar-restricted growth and the snapping-model of cell division. Tuberculosis (Edinb) 87: 231–236 [CrossRef] [PubMed].
    [Google Scholar]
  40. Thompson J.D. , Higgins D.G. , Gibson T.J. . ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  41. Typas A. , Banzhaf M. , Gross C.A. , Vollmer W. . ( 2012;). From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol 10: 123–136 [PubMed].
    [Google Scholar]
  42. Vadrevu I.S. , Lofton H. , Sarva K. , Blasczyk E. , Plocinska R. , Chinnaswamy J. , Madiraju M. , Rajagopalan M. . ( 2011;). ChiZ levels modulate cell division process in mycobacteria. Tuberculosis (Edinb) 91: (Suppl 1), S128–S135 [CrossRef] [PubMed].
    [Google Scholar]
  43. Van Kessel J.C. , Hatfull G.F. . ( 2007;). Recombineering in Mycobacterium tuberculosis. Nat Methods 4: 147–152 [PubMed].[CrossRef]
    [Google Scholar]
  44. Ventura M. , Rieck B. , Boldrin F. , Degiacomi G. , Bellinzoni M. , Barilone N. , Alzaidi F. , Alzari P.M. , Manganelli R. , O'Hare H.M. . ( 2013;). GarA is an essential regulator of metabolism in Mycobacterium tuberculosis . Mol Microbiol 90: 356–366 [PubMed].
    [Google Scholar]
  45. Wang X. , Huang J. , Mukherjee A. , Cao C. , Lutkenhaus J. . ( 1997;). Analysis of the interaction of FtsZ with itself, GTP, and FtsA. J Bacteriol 179: 5551–5559.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000108
Loading
/content/journal/micro/10.1099/mic.0.000108
Loading

Data & Media loading...

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error