It is increasingly clear that rapid evolutionary dynamics are an important process in microbial ecology. Experimental evolution, wherein microbial evolution is observed in real-time, has revealed many instances of appreciable evolutionary change occurring on very short timescales of a few days or weeks in response to a variety of biotic and abiotic selection pressures. From clinical infections, including the chronic bacterial lung infections associated with cystic fibrosis that form a focus of my research, there is now abundant evidence suggesting that rapid evolution by infecting microbes contributes to host adaptation, treatment failure and worsening patient prognosis. However, disentangling the drivers of natural selection in complex infection environments is extremely challenging and limits our understanding of the selective pressures acting upon microbes in infections. Controlled evolution experiments can make a vital contribution to this by determining the causal links between predicted drivers of natural selection and the evolutionary responses of microbes. Integration of experimental evolution into studies of clinical infections is a key next step towards a better understanding of the causes and consequences of rapid microbial evolution in infections, and discovering how these evolutionary processes might be influenced to improve patient health.

A video of this Prize Lecture, presented at the Society for General Microbiology Annual Conference 2015, can be viewed via this link: Michael A. Brockhurst https://www.youtube.com/watch?v=N1bodVSl27E


Article metrics loading...

Loading full text...

Full text loading...



  1. Ashish A., Paterson S., Mowat E., Fothergill J. L., Walshaw M. J., Winstanley C. (2013). Extensive diversification is a common feature of Pseudomonas aeruginosa populations during respiratory infections in cystic fibrosis. J Cyst Fibros 12, 790793 [View Article][PubMed]. [Google Scholar]
  2. Barrick J. E., Lenski R. E. (2013). Genome dynamics during experimental evolution. Nat Rev Genet 14, 827839 [View Article][PubMed]. [Google Scholar]
  3. Barrick J. E., Yu D. S., Yoon S. H., Jeong H., Oh T. K., Schneider D., Lenski R. E., Kim J. F. (2009). Genome evolution and adaptation in a long-term experiment with Escherichia coli . Nature 461, 12431247 [View Article][PubMed]. [Google Scholar]
  4. Brockhurst M. A. (2007). Ecology: death and destruction determine diversity. Curr Biol 17, R512R514 [View Article][PubMed]. [Google Scholar]
  5. Brockhurst M. A., Koskella B. (2013). Experimental coevolution of species interactions. Trends Ecol Evol 28, 367375 [View Article][PubMed]. [Google Scholar]
  6. Brockhurst M. A., Morgan A. D., Rainey P. B., Buckling A. (2003). Population mixing accelerates coevolution. Ecol Lett 6, 975979 [View Article]. [Google Scholar]
  7. Brockhurst M. A., Rainey P. B., Buckling A. (2004). The effect of spatial heterogeneity and parasites on the evolution of host diversity. Proc Biol Sci 271, 107111 [View Article][PubMed]. [Google Scholar]
  8. Brockhurst M. A., Buckling A., Rainey P. B. (2005). The effect of a bacteriophage on diversification of the opportunistic bacterial pathogen. Pseudomonas aeruginosa. Proc Biol Sci 272, 13851391 [View Article][PubMed]. [Google Scholar]
  9. Brockhurst M. A., Buckling A., Gardner A. (2007a). Cooperation peaks at intermediate disturbance. Curr Biol 17, 761765 [View Article][PubMed]. [Google Scholar]
  10. Brockhurst M. A., Colegrave N., Hodgson D. J., Buckling A. (2007b). Niche occupation limits adaptive radiation in experimental microcosms. PLoS One 2, e193 [View Article][PubMed]. [Google Scholar]
  11. Brockhurst M. A., Buckling A., Racey D., Gardner A. (2008). Resource supply and the evolution of public-goods cooperation in bacteria. BMC Biol 6, 20 [View Article][PubMed]. [Google Scholar]
  12. Brockhurst M. A., Chapman T., King K. C., Mank J. E., Paterson S., Hurst G. D. (2014). Running with the Red Queen: the role of biotic conflicts in evolution. Proc Biol Sci 281, 20141382 [View Article][PubMed]. [Google Scholar]
  13. Buckling A., Rainey P. B. (2002). The role of parasites in sympatric and allopatric host diversification. Nature 420, 496499.[CrossRef] [Google Scholar]
  14. Buckling A., Craig Maclean R., Brockhurst M. A., Colegrave N. (2009). The Beagle in a bottle. Nature 457, 824829 [View Article][PubMed]. [Google Scholar]
  15. Elena S. F., Lenski R. E. (2003). Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat Rev Genet 4, 457469 [View Article][PubMed]. [Google Scholar]
  16. Fitzgerald J. R. (2014). Evolution of Staphylococcus aureus during human colonization and infection. Infect Genet Evol 21, 542547 [View Article][PubMed]. [Google Scholar]
  17. Folkesson A., Jelsbak L., Yang L., Johansen H. K., Ciofu O., Høiby N., Molin S. (2012). Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10, 841851 [View Article][PubMed]. [Google Scholar]
  18. Fothergill J. L., Panagea S., Hart C. A., Walshaw M. J., Pitt T. L., Winstanley C. (2007). Widespread pyocyanin over-production among isolates of a cystic fibrosis epidemic strain. BMC Microbiol 7, 45 [View Article][PubMed]. [Google Scholar]
  19. Fothergill J. L., Mowat E., Ledson M. J., Walshaw M. J., Winstanley C. (2010). Fluctuations in phenotypes and genotypes within populations of Pseudomonas aeruginosa in the cystic fibrosis lung during pulmonary exacerbations. J Med Microbiol 59, 472481 [View Article][PubMed]. [Google Scholar]
  20. Fothergill J. L., Walshaw M. J., Winstanley C. (2012). Transmissible strains of Pseudomonas aeruginosa in cystic fibrosis lung infections. Eur Respir J 40, 227238 [View Article][PubMed]. [Google Scholar]
  21. Fothergill J. L., Neill D. R., Loman N., Winstanley C., Kadioglu A. (2014). Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat Commun 5, 4780 [View Article][PubMed]. [Google Scholar]
  22. Govan J. R., Deretic V. (1996). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60, 539574[PubMed]. [Google Scholar]
  23. Habets M. G. J. L., Brockhurst M. A. (2012). Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 8, 416418 [View Article][PubMed]. [Google Scholar]
  24. Hansen S. K., Rau M. H., Johansen H. K., Ciofu O., Jelsbak L., Yang L., Folkesson A., Jarmer H. Ø., Aanæs K., other authors. (2012). Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J 6, 3145 [View Article][PubMed]. [Google Scholar]
  25. Harrison F. (2007). Microbial ecology of the cystic fibrosis lung. Microbiology 153, 917923 [View Article][PubMed]. [Google Scholar]
  26. Harrison F., Muruli A., Higgins S., Diggle S. P. (2014). Development of an ex vivo porcine lung model for studying growth, virulence, and signaling of Pseudomonas aeruginosa . Infect Immun 82, 33123323 [View Article][PubMed]. [Google Scholar]
  27. Hoffman L. R., Kulasekara H. D., Emerson J., Houston L. S., Burns J. L., Ramsey B. W., Miller S. I. (2009). Pseudomonas aeruginosa lasR mutants are associated with cystic fibrosis lung disease progression. J Cyst Fibros 8, 6670 [View Article][PubMed]. [Google Scholar]
  28. Jiricny N., Molin S., Foster K., Diggle S. P., Scanlan P. D., Ghoul M., Johansen H. K., Santorelli L. A., Popat R., other authors. (2014). Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS One 9, e83124 [View Article][PubMed]. [Google Scholar]
  29. Koskella B., Brockhurst M. A. (2014). Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol Rev 38, 916931 [View Article][PubMed]. [Google Scholar]
  30. López-Causapé C., Rojo-Molinero E., Mulet X., Cabot G., Moyà B., Figuerola J., Togores B., Pérez J. L., Oliver A. (2013). Clonal dissemination, emergence of mutator lineages and antibiotic resistance evolution in Pseudomonas aeruginosa cystic fibrosis chronic lung infection. PLoS One 8, e71001 [View Article][PubMed]. [Google Scholar]
  31. Mahenthiralingam E., Campbell M. E., Speert D. P. (1994). Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis. Infect Immun 62, 596605[PubMed]. [Google Scholar]
  32. Marvig R. L., Sommer L. M., Molin S., Johansen H. K. (2015). Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47, 5764 [View Article][PubMed]. [Google Scholar]
  33. Mena A., Smith E. E., Burns J. L., Speert D. P., Moskowitz S. M., Perez J. L., Oliver A. (2008). Genetic adaptation of Pseudomonas aeruginosa to the airways of cystic fibrosis patients is catalyzed by hypermutation. J Bacteriol 190, 79107917 [View Article][PubMed]. [Google Scholar]
  34. Moskowitz S. M., Brannon M. K., Dasgupta N., Pier M., Sgambati N., Miller A. K., Selgrade S. E., Miller S. I., Denton M., other authors. (2012). PmrB mutations promote polymyxin resistance of Pseudomonas aeruginosa isolated from colistin-treated cystic fibrosis patients. Antimicrob Agents Chemother 56, 10191030 [View Article][PubMed]. [Google Scholar]
  35. Mowat E., Paterson S., Fothergill J. L., Wright E. A., Ledson M. J., Walshaw M. J., Brockhurst M. A., Winstanley C. (2011). Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 183, 16741679 [View Article][PubMed]. [Google Scholar]
  36. Oliver A., Cantón R., Campo P., Baquero F., Blázquez J. (2000). High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288, 12511253 [View Article][PubMed]. [Google Scholar]
  37. Paterson S., Vogwill T., Buckling A., Benmayor R., Spiers A. J., Thomson N. R., Quail M., Smith F., Walker D., other authors. (2010). Antagonistic coevolution accelerates molecular evolution. Nature 464, 275278 [View Article][PubMed]. [Google Scholar]
  38. Scanlan P. D., Hall A. R., Blackshields G., Friman V. P., Davis M. R. Jr, Goldberg J. B., Buckling A. (2015). Coevolution with bacteriophages drives genome-wide host evolution and constrains the acquisition of abiotic-beneficial mutations. Mol Biol Evol [Epub ahead of print] [View Article][PubMed]. [Google Scholar]
  39. Smith E. E., Buckley D. G., Wu Z., Saenphimmachak C., Hoffman L. R., D'Argenio D. A., Miller S. I., Ramsey B. W., Speert D. P., other authors. (2006). Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. Proc Natl Acad Sci U S A 103, 84878492 [View Article][PubMed]. [Google Scholar]
  40. Sriramulu D. (2013). Evolution and impact of bacterial drug resistance in the context of cystic fibrosis disease and nosocomial settings. Microbiol Insights 6, 2936 [View Article][PubMed]. [Google Scholar]
  41. Taylor T. B., Mulley G., Dills A. H., Alsohim A. S., McGuffin L. J., Studholme D. J., Silby M. W., Brockhurst M. A., Johnson L. J., Jackson R. W. (2015). Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. Science 347, 10141017 [View Article][PubMed]. [Google Scholar]
  42. Van Valen L. (1973). A new evolutionary law. Evol Theory 1, 130. [Google Scholar]
  43. Vogwill T., Fenton A., Brockhurst M. A. (2011). Coevolving parasites enhance the diversity-decreasing effect of dispersal. Biol Lett 7, 578580 [View Article][PubMed]. [Google Scholar]
  44. Williams H. D., Davies J. C. (2012). Basic science for the chest physician: Pseudomonas aeruginosa and the cystic fibrosis airway. Thorax 67, 465467 [View Article][PubMed]. [Google Scholar]
  45. Williams D., Evans B., Haldenby S., Walshaw M. J., Brockhurst M. A., Winstanley C., Paterson S. (2015). Divergent, coexisting Pseudomonas aeruginosa lineages in chronic cystic fibrosis lung infections. Am J Respir Crit Care Med 191, 775785 [View Article][PubMed]. [Google Scholar]
  46. Wong A., Rodrigue N., Kassen R. (2012). Genomics of adaptation during experimental evolution of the opportunistic pathogen Pseudomonas aeruginosa . PLoS Genet 8, e1002928 [View Article][PubMed]. [Google Scholar]
  47. Workentine M. L., Sibley C. D., Glezerson B., Purighalla S., Norgaard-Gron J. C., Parkins M. D., Rabin H. R., Surette M. G. (2013). Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One 8, e60225 [View Article][PubMed]. [Google Scholar]
  48. Wright E. A., Fothergill J. L., Paterson S., Brockhurst M. A., Winstanley C. (2013). Sub-inhibitory concentrations of some antibiotics can drive diversification of Pseudomonas aeruginosa populations in artificial sputum medium. BMC Microbiol 13, 170 [View Article][PubMed]. [Google Scholar]
  49. Yang L., Jelsbak L., Marvig R. L., Damkiær S., Workman C. T., Rau M. H., Hansen S. K., Folkesson A., Johansen H. K., other authors. (2011). Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 108, 74817486 [View Article][PubMed]. [Google Scholar]
  50. Zhang Q. G., Buckling A. (2011). Antagonistic coevolution limits population persistence of a virus in a thermally deteriorating environment. Ecol Lett 14, 282288 [View Article][PubMed]. [Google Scholar]

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error