1887

Abstract

Understanding the pathogenic mechanisms of subspecies (MAP) and the host responses to Johne's disease is complicated by the multi-faceted disease progression, late-onset host reaction and the lack of available infection models. We describe a novel cell culture passage model that mimics the course of infection The developed model simulates the interaction of MAP with the intestinal epithelial cells, followed by infection of macrophages and return to the intestinal epithelium. MAP internalization triggers a minimal inflammatory response. After passage through a macrophage phase, bacterial reinfection of MDBK epithelial cells, representing the late phase of intestinal mucosal infection, is associated with increased synthesis of the pro-inflammatory transcripts of IL-6, CCL5, IL-8 and IL-18, paired with decreased levels of TGFβ. Transcriptome analysis of MAP from each stage of epithelial cell infection identified increased expression of lipid biosynthesis and lipopeptide modification genes in the inflammatory phenotype of MAP. Total lipid analysis by HPLC-ES/MS indicates different lipidomic profiles between the two phenotypes and a unique set of lipids composing the inflammatory MAP phenotype. The presence of selected upregulated lipid-modification gene transcripts in samples of ileal tissue from cows diagnosed with Johne's disease supports and validates the model. By using the relatively simple cell culture passage model, we show that MAP alters its lipid composition during intracellular infection and acquires a pro-inflammatory phenotype, which likely is associated with the inflammatory phase of Johne's disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000106
2015-07-01
2022-01-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1420.html?itemId=/content/journal/micro/10.1099/mic.0.000106&mimeType=html&fmt=ahah

References

  1. Alonso-Hearn M., Patel D., Danelishvili L., Meunier-Goddik L., Bermudez L.E. (2008). The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42Infect Immun 76170178doi:10.1128/IAI.01913-06 [PubMed].[CrossRef] [Google Scholar]
  2. Alonso-Hearn M., Molina E., Geijo M., Vazquez P., Sevilla I., Garrido J.M., Juste R.A. (2009). Isolation of Mycobacterium avium subsp. paratuberculosis from muscle tissue of naturally infected cattleFoodborne Pathog Dis 6513518doi:10.1089/fpd.2008.0226 [PubMed].[CrossRef] [Google Scholar]
  3. Alonso-Hearn M., Eckstein T.M., Sommer S., Bermudez L.E. (2010). Mycobacterium avium subsp. paratuberculosis LuxR regulates cell envelope and virulenceInnate Immun 16235247doi:10.1177/1753425909339811 [PubMed].[CrossRef] [Google Scholar]
  4. Antognoli M.C., Garry F.B., Hirst H.L., Lombard J.E., Dennis M.M., Gould D.H., Salman M.D. (2008). Characterization of Mycobacterium avium subspecies paratuberculosis disseminated infection in dairy cattle and its association with antemortem test resultsVet Microbiol 127300308doi:10.1016/j.vetmic.2007.08.017 [PubMed].[CrossRef] [Google Scholar]
  5. Babrak L., Danelishvili L., Rose S.J., Kornberg T., Bermudez L.E. (2015). The environment of Mycobacterium avium subsp. hominissuis microaggregates induces the synthesis of small proteins associated with efficient infection of the respiratory epithelial cellsInfect Immun 2625636Medline.[CrossRef] [Google Scholar]
  6. Bannantine J.P., Everman J.L., Rose S.J., Babrak L., Katani R., Barletta R.G., Talaat A.M., Gröhn Y.T., Chang Y.F., other authors. (2014). Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in miceFront Cell Infect Microbiol 488doi:10.3389/fcimb.2014.00088 [PubMed]. [Google Scholar]
  7. Bansal-Mutalik R., Nikaido H. (2014). Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosidesProc Natl Acad Sci U S A 11149584963doi:10.1073/pnas.1403078111 [PubMed].[CrossRef] [Google Scholar]
  8. Begg D.J., Whittington R.J. (2008). Experimental animal infection models for Johne's disease, an infectious enteropathy caused by Mycobacterium avium subsp. paratuberculosis Vet J 176129145doi:10.1016/j.tvjl.2007.02.022 [PubMed].[CrossRef] [Google Scholar]
  9. Bermudez L.E., Young L.S. (1994). Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complexInfect Immun 6220212026Medline. [Google Scholar]
  10. Bermudez L.E., Petrofsky M., Sangari F. (2004). Intracellular phenotype of Mycobacterium avium enters macrophages primarily by a macropinocytosis-like mechanism and survives in a compartment that differs from that with extracellular phenotypeCell Biol Int 28411419doi:10.1016/j.cellbi.2004.03.010 [PubMed].[CrossRef] [Google Scholar]
  11. Bermudez L.E., Petrofsky M., Sommer S., Barletta R.G. (2010). Peyer's patch-deficient mice demonstrate that Mycobacterium avium subsp. paratuberculosis translocates across the mucosal barrier via both M cells and enterocytes but has inefficient disseminationInfect Immun 7835703577doi:10.1128/IAI.01411-09 [PubMed].[CrossRef] [Google Scholar]
  12. Buergelt C.D., Hall C., McEntee K., Duncan J.R. (1978). Pathological evaluation of paratuberculosis in naturally infected cattleVet Pathol 15196207doi:10.1177/030098587801500206 [PubMed].[CrossRef] [Google Scholar]
  13. Buza J.J., Mori Y., Bari A.M., Hikono H., Aodon-geril, Hirayama S., Shu Y., Momotani E. (2003). Mycobacterium avium subsp. paratuberculosis infection causes suppression of RANTES, monocyte chemoattractant protein 1, and tumor necrosis factor alpha expression in peripheral blood of experimentally infected cattleInfect Immun 7172237227doi:10.1128/IAI.71.12.7223-7227.2003 [PubMed].[CrossRef] [Google Scholar]
  14. Cambier C.J., Takaki K.K., Larson R.P., Hernandez R.E., Tobin D.M., Urdahl K.B., Cosma C.L., Ramakrishnan L. (2014). Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipidsNature 505218222doi:10.1038/nature12799 [PubMed].[CrossRef] [Google Scholar]
  15. Cooney M.A., Steele J.L., Steinberg H., Talaat A.M. (2014). A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334Front Cell Infect Microbiol 411doi:10.3389/fcimb.2014.00011 [PubMed].[CrossRef] [Google Scholar]
  16. David J., Barkema H.W., Mortier R., Ghosh S., Guan L., De Buck J. (2014). Gene expression profiling and putative biomarkers of calves 3 months after infection with Mycobacterium avium subspecies paratuberculosis Vet Immunol Immunopathol 160107117doi:10.1016/j.vetimm.2014.04.006 [PubMed].[CrossRef] [Google Scholar]
  17. Diard M., Garcia V., Maier L., Remus-Emsermann M.N., Regoes R.R., Ackermann M., Hardt W.D. (2013). Stabilization of cooperative virulence by the expression of an avirulent phenotypeNature 494353356doi:10.1038/nature11913 [PubMed].[CrossRef] [Google Scholar]
  18. Early J., Bermudez L.E. (2011). Mimicry of the pathogenic mycobacterium vacuole in vitro elicits the bacterial intracellular phenotype, including early-onset macrophage deathInfect Immun 7924122422doi:10.1128/IAI.01120-10 [PubMed].[CrossRef] [Google Scholar]
  19. Eckstein T.M., Chandrasekaran S., Mahapatra S., McNeil M.R., Chatterjee D., Rithner C.D., Ryan P.W., Belisle J.T., Inamine J.M. (2006). A major cell wall lipopeptide of Mycobacterium avium subspecies paratuberculosis J Biol Chem 28152095215doi:10.1074/jbc.M512465200 [PubMed].[CrossRef] [Google Scholar]
  20. Edgar R., Domrachev M., Lash A.E. (2002). Gene Expression Omnibus: NCBI gene expression and hybridization array data repositoryNucleic Acids Res 30207210doi:10.1093/nar/30.1.207 [PubMed].[CrossRef] [Google Scholar]
  21. Ehrt S., Schnappinger D. (2007). Mycobacterium tuberculosis virulence: lipids inside and outNat Med 13284285doi:10.1038/nm0307-284 [PubMed].[CrossRef] [Google Scholar]
  22. Facciuolo A., Kelton D.F., Mutharia L.M. (2013). Novel secreted antigens of Mycobacterium paratuberculosis as serodiagnostic biomarkers for Johne's disease in cattleClin Vaccine Immunol 2017831791doi:10.1128/CVI.00380-13 [PubMed].[CrossRef] [Google Scholar]
  23. Fratti R.A., Chua J., Vergne I., Deretic V. (2003). Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrestProc Natl Acad Sci U S A 10054375442doi:10.1073/pnas.0737613100 [PubMed].[CrossRef] [Google Scholar]
  24. Freund J. (1956). The mode of action of immunologic adjuvantsBibl Tuberc 10130148Medline. [Google Scholar]
  25. Geisel R.E., Sakamoto K., Russell D.G., Rhoades E.R. (2005). In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolatesJ Immunol 17450075015doi:10.4049/jimmunol.174.8.5007 [PubMed].[CrossRef] [Google Scholar]
  26. Hagblom P., Segal E., Billyard E., So M. (1985). Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae Nature 315156158doi:10.1038/315156a0 [PubMed].[CrossRef] [Google Scholar]
  27. Harriff M., Bermudez L.E. (2009). Environmental amoebae and mycobacterial pathogenesisMethods Mol Biol 465433442doi:10.1007/978-1-59745-207-6_28 [PubMed].[CrossRef] [Google Scholar]
  28. Hines M.E. II, Stabel J.R., Sweeney R.W., Griffin F., Talaat A.M., Bakker D., Benedictus G., Davis W.C., de Lisle G.W., other authors. (2007). Experimental challenge models for Johne's disease: a review and proposed international guidelinesVet Microbiol 122197222doi:10.1016/j.vetmic.2007.03.009 [PubMed].[CrossRef] [Google Scholar]
  29. Hines M.E. II, Turnquist S.E., Ilha M.R., Rajeev S., Jones A.L., Whittington L., Bannantine J.P., Barletta R.G., Gröhn Y.T., other authors. (2014). Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's diseaseFront Cell Infect Microbiol 426doi:10.3389/fcimb.2014.00026 [PubMed].[CrossRef] [Google Scholar]
  30. Khan F.A., Chaudhry Z.I., Ali M.I., Khan S., Mumtaz N., Ahmad I. (2010). Detection of Mycobacterium avium subsp. paratuberculosis in tissue samples of cattle and buffaloesTrop Anim Health Prod 42633638doi:10.1007/s11250-009-9467-8 [PubMed].[CrossRef] [Google Scholar]
  31. Khare S., Lawhon S.D., Drake K.L., Nunes J.E., Figueiredo J.F., Rossetti C.A., Gull T., Everts R.E., Lewin H.A., other authors. (2012). Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerancePLoS One 7e42127doi:10.1371/journal.pone.0042127 [PubMed].[CrossRef] [Google Scholar]
  32. Konnai S., Usui T., Ohashi K., Onuma M. (2003). The rapid quantitative analysis of bovine cytokine genes by real-time RT-PCRVet Microbiol 94283294doi:10.1016/S0378-1135(03)00119-6 [PubMed].[CrossRef] [Google Scholar]
  33. Lee H., Stabel J.R., Kehrli M.E. Jr (2001). Cytokine gene expression in ileal tissues of cattle infected with Mycobacterium paratuberculosis Vet Immunol Immunopathol 827385doi:10.1016/S0165-2427(01)00340-3 [PubMed].[CrossRef] [Google Scholar]
  34. Livak K.J., Schmittgen T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT methodMethods 25402408doi:10.1006/meth.2001.1262 [PubMed].[CrossRef] [Google Scholar]
  35. McNabe M., Tennant R., Danelishvili L., Young L., Bermudez L.E. (2011). Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobialsClin Microbiol Infect 17697703doi:10.1111/j.1469-0691.2010.03307.x [PubMed].[CrossRef] [Google Scholar]
  36. McNamara M., Tzeng S.C., Maier C., Zhang L., Bermudez L.E. (2012). Surface proteome of “Mycobacterium avium subsp. hominissuis” during the early stages of macrophage infectionInfect Immun 8018681880doi:10.1128/IAI.06151-11 [PubMed].[CrossRef] [Google Scholar]
  37. Minnikin D. (1982). Lipids: complex lipids, their chemistry, biosynthesis and roles. In The Biology of the Mycobacteria, pp. 95185. Edited by Ratledge S. J. LondonAcademic Press. [Google Scholar]
  38. Mitchell R.M., Whitlock R.H., Stehman S.M., Benedictus A., Chapagain P.P., Grohn Y.T., Schukken Y.H. (2008). Simulation modeling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United StatesPrev Vet Med 83360380doi:10.1016/j.prevetmed.2007.09.006 [PubMed].[CrossRef] [Google Scholar]
  39. Mosser D.M., Edwards J.P. (2008). Exploring the full spectrum of macrophage activationNat Rev Immunol 8958969doi:10.1038/nri2448 [PubMed].[CrossRef] [Google Scholar]
  40. Ott S.L., Wells S.J., Wagner B.A. (1999). Herd-level economic losses associated with Johne's disease on US dairy operationsPrev Vet Med 40179192doi:10.1016/S0167-5877(99)00037-9 [PubMed].[CrossRef] [Google Scholar]
  41. Patel D., Danelishvili L., Yamazaki Y., Alonso M., Paustian M.L., Bannantine J.P., Meunier-Goddik L., Bermudez L.E. (2006). The ability of Mycobacterium avium subsp. paratuberculosis to enter bovine epithelial cells is influenced by preexposure to a hyperosmolar environment and intracellular passage in bovine mammary epithelial cellsInfect Immun 7428492855doi:10.1128/IAI.74.5.2849-2855.2006 [PubMed].[CrossRef] [Google Scholar]
  42. Penketh A., Pitt T., Roberts D., Hodson M.E., Batten J.C. (1983). The relationship of phenotype changes in Pseudomonas aeruginosa to the clinical condition of patients with cystic fibrosisAm Rev Respir Dis 127605608Medline. [Google Scholar]
  43. Periasamy S., Tripathi B.N., Singh N. (2013). Mechanisms of Mycobacterium avium subsp. paratuberculosis induced apoptosis and necrosis in bovine macrophagesVet Microbiol 165392401doi:10.1016/j.vetmic.2013.03.030 [PubMed].[CrossRef] [Google Scholar]
  44. Rainwater D.L., Kolattukudy P.E. (1985). Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoAJ Biol Chem 260616623Medline. [Google Scholar]
  45. Rocha-Ramírez L.M., Estrada-García I., López-Marín L.M., Segura-Salinas E., Méndez-Aragón P., Van Soolingen D., Torres-González R., Chacón-Salinas R., Estrada-Parra S., other authors. (2008). Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophagesTuberculosis (Edinb) 88212220doi:10.1016/j.tube.2007.10.003 [PubMed].[CrossRef] [Google Scholar]
  46. Ryan G.J., Hoff D.R., Driver E.R., Voskuil M.I., Gonzalez-Juarrero M., Basaraba R.J., Crick D.C., Spencer J.S., Lenaerts A.J. (2010). Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approachPLoS One 5e11108doi:10.1371/journal.pone.0011108 [PubMed].[CrossRef] [Google Scholar]
  47. Sartain M.J., Dick D.L., Rithner C.D., Crick D.C., Belisle J.T. (2011). Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”J Lipid Res 52861872doi:10.1194/jlr.M010363 [PubMed].[CrossRef] [Google Scholar]
  48. Scandurra G.M., de Lisle G.W., Cavaignac S.M., Young M., Kawakami R.P., Collins D.M. (2010). Assessment of live candidate vaccines for paratuberculosis in animal models and macrophagesInfect Immun 7813831389doi:10.1128/IAI.01020-09 [PubMed].[CrossRef] [Google Scholar]
  49. Schneider C.A., Rasband W.S., Eliceiri K.W. (2012). NIH Image to ImageJ: 25 years of image analysisNat Methods 9671675doi:10.1038/nmeth.2089 [PubMed].[CrossRef] [Google Scholar]
  50. Sigurethardóttir O.G., Valheim M., Press C.M. (2004). Establishment of Mycobacterium avium subsp. paratuberculosis infection in the intestine of ruminantsAdv Drug Deliv Rev 56819834doi:10.1016/j.addr.2003.10.032 [PubMed].[CrossRef] [Google Scholar]
  51. Smythies L.E., Sellers M., Clements R.H., Mosteller-Barnum M., Meng G., Benjamin W.H., Orenstein J.M., Smith P.D. (2005). Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activityJ Clin Invest 1156675doi:10.1172/JCI200519229 [PubMed].[CrossRef] [Google Scholar]
  52. Souza C., Davis W.C., Eckstein T.M., Sreevatsan S., Weiss D.J. (2013). Mannosylated lipoarabinomannans from Mycobacterium avium subsp. paratuberculosis alters the inflammatory response by bovine macrophages and suppresses killing of Mycobacterium avium subsp. avium organismsPLoS One 8e75924doi:10.1371/journal.pone.0075924 [PubMed].[CrossRef] [Google Scholar]
  53. Stabel J.R. (1998). Johne's disease: a hidden threatJ Dairy Sci 81283288doi:10.3168/jds.S0022-0302(98)75577-8 [PubMed].[CrossRef] [Google Scholar]
  54. Stabel J.R., Robbe-Austerman S. (2011). Early immune markers associated with Mycobacterium avium subsp. paratuberculosis infection in a neonatal calf modelClin Vaccine Immunol 18393405doi:10.1128/CVI.00359-10 [PubMed].[CrossRef] [Google Scholar]
  55. Subramoni S., Agnoli K., Eberl L., Lewenza S., Sokol P.A. (2013). Role of Burkholderia cenocepacia afcE afcF genes in determining lipid-metabolism-associated phenotypesMicrobiology 159603614doi:10.1099/mic.0.064683-0 [PubMed].[CrossRef] [Google Scholar]
  56. Sugawara I., Yamada H., Kaneko H., Mizuno S., Takeda K., Akira S. (1999). Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted miceInfect Immun 6725852589Medline. [Google Scholar]
  57. Sweeney R.W., Whitlock R.H., Rosenberger A.E. (1992). Mycobacterium paratuberculosis cultured from milk and supramammary lymph nodes of infected asymptomatic cowsJ Clin Microbiol 30166171Medline. [Google Scholar]
  58. Tuchscherr L., Medina E., Hussain M., Völker W., Heitmann V., Niemann S., Holzinger D., Roth J., Proctor R.A., other authors. (2011). Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infectionEMBO Mol Med 3129141doi:10.1002/emmm.201000115 [PubMed].[CrossRef] [Google Scholar]
  59. Weigoldt M., Meens J., Doll K., Fritsch I., Möbius P., Goethe R., Gerlach G.F. (2011). Differential proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and isolated from cases of clinical Johne's diseaseMicrobiology 157557565doi:10.1099/mic.0.044859-0 [PubMed].[CrossRef] [Google Scholar]
  60. Weiss D.J., Evanson O.A., Moritz A., Deng M.Q., Abrahamsen M.S. (2002). Differential responses of bovine macrophages to Mycobacterium avium subsp. paratuberculosis Mycobacterium avium subsp. avium Infect Immun 7055565561doi:10.1128/IAI.70.10.5556-5561.2002 [PubMed].[CrossRef] [Google Scholar]
  61. Weiss D.J., Evanson O.A., Souza C.D. (2006). Mucosal immune response in cattle with subclinical Johne's diseaseVet Pathol 43127135doi:10.1354/vp.43-2-127 [PubMed].[CrossRef] [Google Scholar]
  62. Whittington R.J., Marsh I.B., Saunders V., Grant I.R., Juste R., Sevilla I.A., Manning E.J., Whitlock R.H. (2011). Culture phenotypes of genomically and geographically diverse Mycobacterium avium subsp. paratuberculosis isolates from different hostsJ Clin Microbiol 4918221830doi:10.1128/JCM.00210-11 [PubMed].[CrossRef] [Google Scholar]
  63. Wren B., Dorrell N. (2002). Functional Microbial GenomicsAmsterdam, BostonAcademic Press. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000106
Loading
/content/journal/micro/10.1099/mic.0.000106
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error