1887

Abstract

Understanding the pathogenic mechanisms of subspecies (MAP) and the host responses to Johne's disease is complicated by the multi-faceted disease progression, late-onset host reaction and the lack of available infection models. We describe a novel cell culture passage model that mimics the course of infection The developed model simulates the interaction of MAP with the intestinal epithelial cells, followed by infection of macrophages and return to the intestinal epithelium. MAP internalization triggers a minimal inflammatory response. After passage through a macrophage phase, bacterial reinfection of MDBK epithelial cells, representing the late phase of intestinal mucosal infection, is associated with increased synthesis of the pro-inflammatory transcripts of IL-6, CCL5, IL-8 and IL-18, paired with decreased levels of TGFβ. Transcriptome analysis of MAP from each stage of epithelial cell infection identified increased expression of lipid biosynthesis and lipopeptide modification genes in the inflammatory phenotype of MAP. Total lipid analysis by HPLC-ES/MS indicates different lipidomic profiles between the two phenotypes and a unique set of lipids composing the inflammatory MAP phenotype. The presence of selected upregulated lipid-modification gene transcripts in samples of ileal tissue from cows diagnosed with Johne's disease supports and validates the model. By using the relatively simple cell culture passage model, we show that MAP alters its lipid composition during intracellular infection and acquires a pro-inflammatory phenotype, which likely is associated with the inflammatory phase of Johne's disease.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000106
2015-07-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1420.html?itemId=/content/journal/micro/10.1099/mic.0.000106&mimeType=html&fmt=ahah

References

  1. Alonso-Hearn M. , Patel D. , Danelishvili L. , Meunier-Goddik L. , Bermudez L.E. . ( 2008;). The Mycobacterium avium subsp. paratuberculosis MAP3464 gene encodes an oxidoreductase involved in invasion of bovine epithelial cells through the activation of host cell Cdc42. Infect Immun 76: 170–178 doi:10.1128/IAI.01913-06 [PubMed].[CrossRef]
    [Google Scholar]
  2. Alonso-Hearn M. , Molina E. , Geijo M. , Vazquez P. , Sevilla I. , Garrido J.M. , Juste R.A. . ( 2009;). Isolation of Mycobacterium avium subsp. paratuberculosis from muscle tissue of naturally infected cattle. Foodborne Pathog Dis 6: 513–518 doi:10.1089/fpd.2008.0226 [PubMed].[CrossRef]
    [Google Scholar]
  3. Alonso-Hearn M. , Eckstein T.M. , Sommer S. , Bermudez L.E. . ( 2010;). Mycobacterium avium subsp. paratuberculosis LuxR regulates cell envelope and virulence. Innate Immun 16: 235–247 doi:10.1177/1753425909339811 [PubMed].[CrossRef]
    [Google Scholar]
  4. Antognoli M.C. , Garry F.B. , Hirst H.L. , Lombard J.E. , Dennis M.M. , Gould D.H. , Salman M.D. . ( 2008;). Characterization of Mycobacterium avium subspecies paratuberculosis disseminated infection in dairy cattle and its association with antemortem test results. Vet Microbiol 127: 300–308 doi:10.1016/j.vetmic.2007.08.017 [PubMed].[CrossRef]
    [Google Scholar]
  5. Babrak L. , Danelishvili L. , Rose S.J. , Kornberg T. , Bermudez L.E. . ( 2015;). The environment of Mycobacterium avium subsp. hominissuis microaggregates induces the synthesis of small proteins associated with efficient infection of the respiratory epithelial cells. Infect Immun 2: 625–636 Medline.[CrossRef]
    [Google Scholar]
  6. Bannantine J.P. , Everman J.L. , Rose S.J. , Babrak L. , Katani R. , Barletta R.G. , Talaat A.M. , Gröhn Y.T. , Chang Y.F. , other authors . ( 2014;). Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice. Front Cell Infect Microbiol 4: 88 doi:10.3389/fcimb.2014.00088 [PubMed].
    [Google Scholar]
  7. Bansal-Mutalik R. , Nikaido H. . ( 2014;). Mycobacterial outer membrane is a lipid bilayer and the inner membrane is unusually rich in diacyl phosphatidylinositol dimannosides. Proc Natl Acad Sci U S A 111: 4958–4963 doi:10.1073/pnas.1403078111 [PubMed].[CrossRef]
    [Google Scholar]
  8. Begg D.J. , Whittington R.J. . ( 2008;). Experimental animal infection models for Johne's disease, an infectious enteropathy caused by Mycobacterium avium subsp. paratuberculosis . Vet J 176: 129–145 doi:10.1016/j.tvjl.2007.02.022 [PubMed].[CrossRef]
    [Google Scholar]
  9. Bermudez L.E. , Young L.S. . ( 1994;). Factors affecting invasion of HT-29 and HEp-2 epithelial cells by organisms of the Mycobacterium avium complex. Infect Immun 62: 2021–2026 Medline.
    [Google Scholar]
  10. Bermudez L.E. , Petrofsky M. , Sangari F. . ( 2004;). Intracellular phenotype of Mycobacterium avium enters macrophages primarily by a macropinocytosis-like mechanism and survives in a compartment that differs from that with extracellular phenotype. Cell Biol Int 28: 411–419 doi:10.1016/j.cellbi.2004.03.010 [PubMed].[CrossRef]
    [Google Scholar]
  11. Bermudez L.E. , Petrofsky M. , Sommer S. , Barletta R.G. . ( 2010;). Peyer's patch-deficient mice demonstrate that Mycobacterium avium subsp. paratuberculosis translocates across the mucosal barrier via both M cells and enterocytes but has inefficient dissemination. Infect Immun 78: 3570–3577 doi:10.1128/IAI.01411-09 [PubMed].[CrossRef]
    [Google Scholar]
  12. Buergelt C.D. , Hall C. , McEntee K. , Duncan J.R. . ( 1978;). Pathological evaluation of paratuberculosis in naturally infected cattle. Vet Pathol 15: 196–207 doi:10.1177/030098587801500206 [PubMed].[CrossRef]
    [Google Scholar]
  13. Buza J.J. , Mori Y. , Bari A.M. , Hikono H. , Aodon-geril, Hirayama S. , Shu Y. , Momotani E. . ( 2003;). Mycobacterium avium subsp. paratuberculosis infection causes suppression of RANTES, monocyte chemoattractant protein 1, and tumor necrosis factor alpha expression in peripheral blood of experimentally infected cattle. Infect Immun 71: 7223–7227 doi:10.1128/IAI.71.12.7223-7227.2003 [PubMed].[CrossRef]
    [Google Scholar]
  14. Cambier C.J. , Takaki K.K. , Larson R.P. , Hernandez R.E. , Tobin D.M. , Urdahl K.B. , Cosma C.L. , Ramakrishnan L. . ( 2014;). Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids. Nature 505: 218–222 doi:10.1038/nature12799 [PubMed].[CrossRef]
    [Google Scholar]
  15. Cooney M.A. , Steele J.L. , Steinberg H. , Talaat A.M. . ( 2014;). A murine oral model for Mycobacterium avium subsp. paratuberculosis infection and immunomodulation with Lactobacillus casei ATCC 334. Front Cell Infect Microbiol 4: 11 doi:10.3389/fcimb.2014.00011 [PubMed].[CrossRef]
    [Google Scholar]
  16. David J. , Barkema H.W. , Mortier R. , Ghosh S. , Guan L. , De Buck J. . ( 2014;). Gene expression profiling and putative biomarkers of calves 3 months after infection with Mycobacterium avium subspecies paratuberculosis . Vet Immunol Immunopathol 160: 107–117 doi:10.1016/j.vetimm.2014.04.006 [PubMed].[CrossRef]
    [Google Scholar]
  17. Diard M. , Garcia V. , Maier L. , Remus-Emsermann M.N. , Regoes R.R. , Ackermann M. , Hardt W.D. . ( 2013;). Stabilization of cooperative virulence by the expression of an avirulent phenotype. Nature 494: 353–356 doi:10.1038/nature11913 [PubMed].[CrossRef]
    [Google Scholar]
  18. Early J. , Bermudez L.E. . ( 2011;). Mimicry of the pathogenic mycobacterium vacuole in vitro elicits the bacterial intracellular phenotype, including early-onset macrophage death. Infect Immun 79: 2412–2422 doi:10.1128/IAI.01120-10 [PubMed].[CrossRef]
    [Google Scholar]
  19. Eckstein T.M. , Chandrasekaran S. , Mahapatra S. , McNeil M.R. , Chatterjee D. , Rithner C.D. , Ryan P.W. , Belisle J.T. , Inamine J.M. . ( 2006;). A major cell wall lipopeptide of Mycobacterium avium subspecies paratuberculosis . J Biol Chem 281: 5209–5215 doi:10.1074/jbc.M512465200 [PubMed].[CrossRef]
    [Google Scholar]
  20. Edgar R. , Domrachev M. , Lash A.E. . ( 2002;). Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30: 207–210 doi:10.1093/nar/30.1.207 [PubMed].[CrossRef]
    [Google Scholar]
  21. Ehrt S. , Schnappinger D. . ( 2007;). Mycobacterium tuberculosis virulence: lipids inside and out. Nat Med 13: 284–285 doi:10.1038/nm0307-284 [PubMed].[CrossRef]
    [Google Scholar]
  22. Facciuolo A. , Kelton D.F. , Mutharia L.M. . ( 2013;). Novel secreted antigens of Mycobacterium paratuberculosis as serodiagnostic biomarkers for Johne's disease in cattle. Clin Vaccine Immunol 20: 1783–1791 doi:10.1128/CVI.00380-13 [PubMed].[CrossRef]
    [Google Scholar]
  23. Fratti R.A. , Chua J. , Vergne I. , Deretic V. . ( 2003;). Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc Natl Acad Sci U S A 100: 5437–5442 doi:10.1073/pnas.0737613100 [PubMed].[CrossRef]
    [Google Scholar]
  24. Freund J. . ( 1956;). The mode of action of immunologic adjuvants. Bibl Tuberc 10: 130–148 Medline.
    [Google Scholar]
  25. Geisel R.E. , Sakamoto K. , Russell D.G. , Rhoades E.R. . ( 2005;). In vivo activity of released cell wall lipids of Mycobacterium bovis bacillus Calmette-Guérin is due principally to trehalose mycolates. J Immunol 174: 5007–5015 doi:10.4049/jimmunol.174.8.5007 [PubMed].[CrossRef]
    [Google Scholar]
  26. Hagblom P. , Segal E. , Billyard E. , So M. . ( 1985;). Intragenic recombination leads to pilus antigenic variation in Neisseria gonorrhoeae . Nature 315: 156–158 doi:10.1038/315156a0 [PubMed].[CrossRef]
    [Google Scholar]
  27. Harriff M. , Bermudez L.E. . ( 2009;). Environmental amoebae and mycobacterial pathogenesis. Methods Mol Biol 465: 433–442 doi:10.1007/978-1-59745-207-6_28 [PubMed].[CrossRef]
    [Google Scholar]
  28. Hines M.E. II , Stabel J.R. , Sweeney R.W. , Griffin F. , Talaat A.M. , Bakker D. , Benedictus G. , Davis W.C. , de Lisle G.W. , other authors . ( 2007;). Experimental challenge models for Johne's disease: a review and proposed international guidelines. Vet Microbiol 122: 197–222 doi:10.1016/j.vetmic.2007.03.009 [PubMed].[CrossRef]
    [Google Scholar]
  29. Hines M.E. II , Turnquist S.E. , Ilha M.R. , Rajeev S. , Jones A.L. , Whittington L. , Bannantine J.P. , Barletta R.G. , Gröhn Y.T. , other authors . ( 2014;). Evaluation of novel oral vaccine candidates and validation of a caprine model of Johne's disease. Front Cell Infect Microbiol 4: 26 doi:10.3389/fcimb.2014.00026 [PubMed].[CrossRef]
    [Google Scholar]
  30. Khan F.A. , Chaudhry Z.I. , Ali M.I. , Khan S. , Mumtaz N. , Ahmad I. . ( 2010;). Detection of Mycobacterium avium subsp. paratuberculosis in tissue samples of cattle and buffaloes. Trop Anim Health Prod 42: 633–638 doi:10.1007/s11250-009-9467-8 [PubMed].[CrossRef]
    [Google Scholar]
  31. Khare S. , Lawhon S.D. , Drake K.L. , Nunes J.E. , Figueiredo J.F. , Rossetti C.A. , Gull T. , Everts R.E. , Lewin H.A. , other authors . ( 2012;). Systems biology analysis of gene expression during in vivo Mycobacterium avium paratuberculosis enteric colonization reveals role for immune tolerance. PLoS One 7: e42127 doi:10.1371/journal.pone.0042127 [PubMed].[CrossRef]
    [Google Scholar]
  32. Konnai S. , Usui T. , Ohashi K. , Onuma M. . ( 2003;). The rapid quantitative analysis of bovine cytokine genes by real-time RT-PCR. Vet Microbiol 94: 283–294 doi:10.1016/S0378-1135(03)00119-6 [PubMed].[CrossRef]
    [Google Scholar]
  33. Lee H. , Stabel J.R. , Kehrli M.E. Jr . ( 2001;). Cytokine gene expression in ileal tissues of cattle infected with Mycobacterium paratuberculosis . Vet Immunol Immunopathol 82: 73–85 doi:10.1016/S0165-2427(01)00340-3 [PubMed].[CrossRef]
    [Google Scholar]
  34. Livak K.J. , Schmittgen T.D. . ( 2001;). Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25: 402–408 doi:10.1006/meth.2001.1262 [PubMed].[CrossRef]
    [Google Scholar]
  35. McNabe M. , Tennant R. , Danelishvili L. , Young L. , Bermudez L.E. . ( 2011;). Mycobacterium avium ssp. hominissuis biofilm is composed of distinct phenotypes and influenced by the presence of antimicrobials. Clin Microbiol Infect 17: 697–703 doi:10.1111/j.1469-0691.2010.03307.x [PubMed].[CrossRef]
    [Google Scholar]
  36. McNamara M. , Tzeng S.C. , Maier C. , Zhang L. , Bermudez L.E. . ( 2012;). Surface proteome of “Mycobacterium avium subsp. hominissuis” during the early stages of macrophage infection. Infect Immun 80: 1868–1880 doi:10.1128/IAI.06151-11 [PubMed].[CrossRef]
    [Google Scholar]
  37. Minnikin D. . ( 1982;). Lipids: complex lipids, their chemistry, biosynthesis and roles. . In The Biology of the Mycobacteria, pp. 95–185. Edited by Ratledge S. J. . London: Academic Press;.
    [Google Scholar]
  38. Mitchell R.M. , Whitlock R.H. , Stehman S.M. , Benedictus A. , Chapagain P.P. , Grohn Y.T. , Schukken Y.H. . ( 2008;). Simulation modeling to evaluate the persistence of Mycobacterium avium subsp. paratuberculosis (MAP) on commercial dairy farms in the United States. Prev Vet Med 83: 360–380 doi:10.1016/j.prevetmed.2007.09.006 [PubMed].[CrossRef]
    [Google Scholar]
  39. Mosser D.M. , Edwards J.P. . ( 2008;). Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8: 958–969 doi:10.1038/nri2448 [PubMed].[CrossRef]
    [Google Scholar]
  40. Ott S.L. , Wells S.J. , Wagner B.A. . ( 1999;). Herd-level economic losses associated with Johne's disease on US dairy operations. Prev Vet Med 40: 179–192 doi:10.1016/S0167-5877(99)00037-9 [PubMed].[CrossRef]
    [Google Scholar]
  41. Patel D. , Danelishvili L. , Yamazaki Y. , Alonso M. , Paustian M.L. , Bannantine J.P. , Meunier-Goddik L. , Bermudez L.E. . ( 2006;). The ability of Mycobacterium avium subsp. paratuberculosis to enter bovine epithelial cells is influenced by preexposure to a hyperosmolar environment and intracellular passage in bovine mammary epithelial cells. Infect Immun 74: 2849–2855 doi:10.1128/IAI.74.5.2849-2855.2006 [PubMed].[CrossRef]
    [Google Scholar]
  42. Penketh A. , Pitt T. , Roberts D. , Hodson M.E. , Batten J.C. . ( 1983;). The relationship of phenotype changes in Pseudomonas aeruginosa to the clinical condition of patients with cystic fibrosis. Am Rev Respir Dis 127: 605–608 Medline.
    [Google Scholar]
  43. Periasamy S. , Tripathi B.N. , Singh N. . ( 2013;). Mechanisms of Mycobacterium avium subsp. paratuberculosis induced apoptosis and necrosis in bovine macrophages. Vet Microbiol 165: 392–401 doi:10.1016/j.vetmic.2013.03.030 [PubMed].[CrossRef]
    [Google Scholar]
  44. Rainwater D.L. , Kolattukudy P.E. . ( 1985;). Fatty acid biosynthesis in Mycobacterium tuberculosis var. bovis bacillus Calmette-Guérin. Purification and characterization of a novel fatty acid synthase, mycocerosic acid synthase, which elongates n-fatty acyl-CoA with methylmalonyl-CoA. J Biol Chem 260: 616–623 Medline.
    [Google Scholar]
  45. Rocha-Ramírez L.M. , Estrada-García I. , López-Marín L.M. , Segura-Salinas E. , Méndez-Aragón P. , Van Soolingen D. , Torres-González R. , Chacón-Salinas R. , Estrada-Parra S. , other authors . ( 2008;). Mycobacterium tuberculosis lipids regulate cytokines, TLR-2/4 and MHC class II expression in human macrophages. Tuberculosis (Edinb) 88: 212–220 doi:10.1016/j.tube.2007.10.003 [PubMed].[CrossRef]
    [Google Scholar]
  46. Ryan G.J. , Hoff D.R. , Driver E.R. , Voskuil M.I. , Gonzalez-Juarrero M. , Basaraba R.J. , Crick D.C. , Spencer J.S. , Lenaerts A.J. . ( 2010;). Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS One 5: e11108 doi:10.1371/journal.pone.0011108 [PubMed].[CrossRef]
    [Google Scholar]
  47. Sartain M.J. , Dick D.L. , Rithner C.D. , Crick D.C. , Belisle J.T. . ( 2011;). Lipidomic analyses of Mycobacterium tuberculosis based on accurate mass measurements and the novel “Mtb LipidDB”. J Lipid Res 52: 861–872 doi:10.1194/jlr.M010363 [PubMed].[CrossRef]
    [Google Scholar]
  48. Scandurra G.M. , de Lisle G.W. , Cavaignac S.M. , Young M. , Kawakami R.P. , Collins D.M. . ( 2010;). Assessment of live candidate vaccines for paratuberculosis in animal models and macrophages. Infect Immun 78: 1383–1389 doi:10.1128/IAI.01020-09 [PubMed].[CrossRef]
    [Google Scholar]
  49. Schneider C.A. , Rasband W.S. , Eliceiri K.W. . ( 2012;). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9: 671–675 doi:10.1038/nmeth.2089 [PubMed].[CrossRef]
    [Google Scholar]
  50. Sigurethardóttir O.G. , Valheim M. , Press C.M. . ( 2004;). Establishment of Mycobacterium avium subsp. paratuberculosis infection in the intestine of ruminants. Adv Drug Deliv Rev 56: 819–834 doi:10.1016/j.addr.2003.10.032 [PubMed].[CrossRef]
    [Google Scholar]
  51. Smythies L.E. , Sellers M. , Clements R.H. , Mosteller-Barnum M. , Meng G. , Benjamin W.H. , Orenstein J.M. , Smith P.D. . ( 2005;). Human intestinal macrophages display profound inflammatory anergy despite avid phagocytic and bacteriocidal activity. J Clin Invest 115: 66–75 doi:10.1172/JCI200519229 [PubMed].[CrossRef]
    [Google Scholar]
  52. Souza C. , Davis W.C. , Eckstein T.M. , Sreevatsan S. , Weiss D.J. . ( 2013;). Mannosylated lipoarabinomannans from Mycobacterium avium subsp. paratuberculosis alters the inflammatory response by bovine macrophages and suppresses killing of Mycobacterium avium subsp. avium organisms. PLoS One 8: e75924 doi:10.1371/journal.pone.0075924 [PubMed].[CrossRef]
    [Google Scholar]
  53. Stabel J.R. . ( 1998;). Johne's disease: a hidden threat. J Dairy Sci 81: 283–288 doi:10.3168/jds.S0022-0302(98)75577-8 [PubMed].[CrossRef]
    [Google Scholar]
  54. Stabel J.R. , Robbe-Austerman S. . ( 2011;). Early immune markers associated with Mycobacterium avium subsp. paratuberculosis infection in a neonatal calf model. Clin Vaccine Immunol 18: 393–405 doi:10.1128/CVI.00359-10 [PubMed].[CrossRef]
    [Google Scholar]
  55. Subramoni S. , Agnoli K. , Eberl L. , Lewenza S. , Sokol P.A. . ( 2013;). Role of Burkholderia cenocepacia afcE afcF genes in determining lipid-metabolism-associated phenotypes. Microbiology 159: 603–614 doi:10.1099/mic.0.064683-0 [PubMed].[CrossRef]
    [Google Scholar]
  56. Sugawara I. , Yamada H. , Kaneko H. , Mizuno S. , Takeda K. , Akira S. . ( 1999;). Role of interleukin-18 (IL-18) in mycobacterial infection in IL-18-gene-disrupted mice. Infect Immun 67: 2585–2589 Medline.
    [Google Scholar]
  57. Sweeney R.W. , Whitlock R.H. , Rosenberger A.E. . ( 1992;). Mycobacterium paratuberculosis cultured from milk and supramammary lymph nodes of infected asymptomatic cows. J Clin Microbiol 30: 166–171 Medline.
    [Google Scholar]
  58. Tuchscherr L. , Medina E. , Hussain M. , Völker W. , Heitmann V. , Niemann S. , Holzinger D. , Roth J. , Proctor R.A. , other authors . ( 2011;). Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3: 129–141 doi:10.1002/emmm.201000115 [PubMed].[CrossRef]
    [Google Scholar]
  59. Weigoldt M. , Meens J. , Doll K. , Fritsch I. , Möbius P. , Goethe R. , Gerlach G.F. . ( 2011;). Differential proteome analysis of Mycobacterium avium subsp. paratuberculosis grown in vitro and isolated from cases of clinical Johne's disease. Microbiology 157: 557–565 doi:10.1099/mic.0.044859-0 [PubMed].[CrossRef]
    [Google Scholar]
  60. Weiss D.J. , Evanson O.A. , Moritz A. , Deng M.Q. , Abrahamsen M.S. . ( 2002;). Differential responses of bovine macrophages to Mycobacterium avium subsp. paratuberculosis Mycobacterium avium subsp. avium . Infect Immun 70: 5556–5561 doi:10.1128/IAI.70.10.5556-5561.2002 [PubMed].[CrossRef]
    [Google Scholar]
  61. Weiss D.J. , Evanson O.A. , Souza C.D. . ( 2006;). Mucosal immune response in cattle with subclinical Johne's disease. Vet Pathol 43: 127–135 doi:10.1354/vp.43-2-127 [PubMed].[CrossRef]
    [Google Scholar]
  62. Whittington R.J. , Marsh I.B. , Saunders V. , Grant I.R. , Juste R. , Sevilla I.A. , Manning E.J. , Whitlock R.H. . ( 2011;). Culture phenotypes of genomically and geographically diverse Mycobacterium avium subsp. paratuberculosis isolates from different hosts. J Clin Microbiol 49: 1822–1830 doi:10.1128/JCM.00210-11 [PubMed].[CrossRef]
    [Google Scholar]
  63. Wren B. , Dorrell N. . ( 2002;). Functional Microbial Genomics Amsterdam, Boston: Academic Press;.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000106
Loading
/content/journal/micro/10.1099/mic.0.000106
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error