1887

Abstract

Secretion leaders are required to direct nascent proteins to the secretory pathway. They are of interest in the study of intracellular protein transport, and are required for the production of secretory recombinant proteins. Secretion leaders are processed in two steps in the endoplasmic reticulum and Golgi. Although yeast cells typically contain about 150 proteins entering the secretory pathway, only a low number of proteins are actually secreted to the cell supernatant. Analysis of the secretome of the yeast revealed that the most abundant secretory protein, which we named Epx1, belongs to the cysteine-rich secretory protein family CRISP. Surprisingly, the Epx1 secretion leader undergoes a three-step processing on its way to the cell exterior instead of the usual two-step processing. The Kex2 cleavage site within the Epx1 leader is not conserved in the homologues of most other yeasts. We studied the effect of exchanging the Kex2-cleavage motif on the secretory behaviour of reporter proteins fused to variants of the Epx1 leader sequence, and observed mistargeting for some but not all of the variants using fluorescence microscopy. By targeting several recombinant human proteins for secretion, we revealed that a short variant of the leader sequence, as well as the Epx1 signal sequence alone, resulted in the correct N-termini of the secreted proteins. Both leader variants proved to be very efficient, even exceeding the secretion levels obtained with commonly used secretion leaders. Taken together, the novel Epx1 secretion leader sequences are a valuable tool for recombinant protein production as well as basic research of intracellular transport.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000105
2015-07-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1356.html?itemId=/content/journal/micro/10.1099/mic.0.000105&mimeType=html&fmt=ahah

References

  1. Almeida M.S. , Cabral K.S. , de Medeiros L.N. , Valente A.P. , Almeida F.C.L. , Kurtenbach E. . ( 2001;). cDNA cloning and heterologous expression of functional cysteine-rich antifungal protein Psd1 in the yeast Pichia pastoris . Arch Biochem Biophys 395: 199–207 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bader O. , Krauke Y. , Hube B. . ( 2008;). Processing of predicted substrates of fungal Kex2 proteinases from Candida albicans C. glabrata Saccharomyces cerevisiae Pichia pastoris . BMC Microbiol 8: 116 [CrossRef] [PubMed].
    [Google Scholar]
  3. Ballensiefen W. , Schmitt H.D. . ( 1997;). Periplasmic Bar1 protease of Saccharomyces cerevisiae is active before reaching its extracellular destination. Eur J Biochem 247: 142–147 [CrossRef] [PubMed].
    [Google Scholar]
  4. Baumann K. , Maurer M. , Dragosits M. , Cos O. , Ferrer P. , Mattanovich D. . ( 2008;). Hypoxic fed-batch cultivation of Pichia pastoris increases specific and volumetric productivity of recombinant proteins. Biotechnol Bioeng 100: 177–183 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bryant N.J. , Boyd A. . ( 1993;). Immunoisolation of Kex2p-containing organelles from yeast demonstrates colocalisation of three processing proteinases to a single Golgi compartment. J Cell Sci 106: 815–822 [PubMed].
    [Google Scholar]
  6. Bryant N.J. , Stevens T.H. . ( 1998;). Vacuole biogenesis in Saccharomyces cerevisiae: protein transport pathways to the yeast vacuole. Microbiol Mol Biol Rev 62: 230–247 [PubMed].
    [Google Scholar]
  7. Choudhary V. , Schneiter R. . ( 2012;). Pathogen-related yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Proc Natl Acad Sci U S A 109: 16882–16887 [CrossRef] [PubMed].
    [Google Scholar]
  8. Coughlan C.M. , Walker J.L. , Cochran J.C. , Wittrup K.D. , Brodsky J.L. . ( 2004;). Degradation of mutated bovine pancreatic trypsin inhibitor in the yeast vacuole suggests post-endoplasmic reticulum protein quality control. J Biol Chem 279: 15289–15297 [CrossRef] [PubMed].
    [Google Scholar]
  9. Daly R. , Hearn M.T. . ( 2005;). Expression of heterologous proteins in Pichia pastoris: a useful experimental tool in protein engineering and production. J Mol Recognit 18: 119–138 [CrossRef] [PubMed].
    [Google Scholar]
  10. Damasceno L.M. , Huang C.J. , Batt C.A. . ( 2012;). Protein secretion in Pichia pastoris and advances in protein production. Appl Microbiol Biotechnol 93: 31–39 [CrossRef] [PubMed].
    [Google Scholar]
  11. Delic M. , Rebnegger C. , Wanka F. , Puxbaum V. , Haberhauer-Troyer C. , Hann S. , Köllensperger G. , Mattanovich D. , Gasser B. . ( 2012;). Oxidative protein folding and unfolded protein response elicit differing redox regulation in endoplasmic reticulum and cytosol of yeast. Free Radic Biol Med 52: 2000–2012 [CrossRef] [PubMed].
    [Google Scholar]
  12. Delic M. , Valli M. , Graf A.B. , Pfeffer M. , Mattanovich D. , Gasser B. . ( 2013;). The secretory pathway: exploring yeast diversity. FEMS Microbiol Rev 37: 872–914 [PubMed].[CrossRef]
    [Google Scholar]
  13. Devi L. . ( 1991;). Consensus sequence for processing of peptide precursors at monobasic sites. FEBS Lett 280: 189–194 [CrossRef] [PubMed].
    [Google Scholar]
  14. Dujon B. . ( 2010;). Yeast evolutionary genomics. Nat Rev Genet 11: 512–524 [CrossRef] [PubMed].
    [Google Scholar]
  15. Dunn W.A. Jr , Cregg J.M. , Kiel J.A.K.W. , van der Klei I.J. , Oku M. , Sakai Y. , Sibirny A.A. , Stasyk O.V. , Veenhuis M. . ( 2005;). Pexophagy: the selective autophagy of peroxisomes. Autophagy 1: 75–83 [CrossRef] [PubMed].
    [Google Scholar]
  16. Eiden-Plach A. , Zagorc T. , Heintel T. , Carius Y. , Breinig F. , Schmitt M.J. . ( 2004;). Viral preprotoxin signal sequence allows efficient secretion of green fluorescent protein by Candida glabrata Pichia pastoris Saccharomyces cerevisiae, Schizosaccharomyces pombe . Appl Environ Microbiol 70: 961–966 [CrossRef] [PubMed].
    [Google Scholar]
  17. Emr S.D. , Schekman R. , Flessel M.C. , Thorner J. . ( 1983;). An MFα1-SUC2 (α-factor-invertase) gene fusion for study of protein localization and gene expression in yeast. Proc Natl Acad Sci U S A 80: 7080–7084 [CrossRef] [PubMed].
    [Google Scholar]
  18. Fitzgerald I. , Glick B.S. . ( 2014;). Secretion of a foreign protein from budding yeasts is enhanced by cotranslational translocation and by suppression of vacuolar targeting. Microb Cell Fact 13: 125 [CrossRef] [PubMed].
    [Google Scholar]
  19. Fuller R.S. , Brake A.J. , Thorner J. . ( 1989;). Intracellular targeting and structural conservation of a prohormone-processing endoprotease. Science 246: 482–486 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gagnon-Arsenault I. , Tremblay J. , Bourbonnais Y. . ( 2006;). Fungal yapsins and cell wall: a unique family of aspartic peptidases for a distinctive cellular function. FEMS Yeast Res 6: 966–978 [CrossRef] [PubMed].
    [Google Scholar]
  21. Gasser B. , Prielhofer R. , Marx H. , Maurer M. , Nocon J. , Steiger M. , Puxbaum V. , Sauer M. , Mattanovich D. . ( 2013;). Pichia pastoris: protein production host and model organism for biomedical research. Future Microbiol 8: 191–208 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ghosalkar A. , Sahai V. , Srivastava A. . ( 2008;). Secretory expression of interferon-alpha 2b in recombinant Pichia pastoris using three different secretion signals. Protein Expr Purif 60: 103–109 [CrossRef] [PubMed].
    [Google Scholar]
  23. Govindappa N. , Hanumanthappa M. , Venkatarangaiah K. , Periyasamy S. , Sreenivas S. , Soni R. , Sastry K. . ( 2014;). A new signal sequence for recombinant protein secretion in Pichia pastoris . J Microbiol Biotechnol 24: 337–345 [CrossRef] [PubMed].
    [Google Scholar]
  24. Hashimoto Y. , Koyabu N. , Imoto T. . ( 1998;). Effects of signal sequences on the secretion of hen lysozyme by yeast: construction of four secretion cassette vectors. Protein Eng 11: 75–77 [CrossRef] [PubMed].
    [Google Scholar]
  25. Heiss S. , Maurer M. , Hahn R. , Mattanovich D. , Gasser B. . ( 2013;). Identification and deletion of the major secreted protein of Pichia pastoris . Appl Microbiol Biotechnol 97: 1241–1249 [CrossRef] [PubMed].
    [Google Scholar]
  26. Holkeri H. , Makarow M. . ( 1998;). Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett 429: 162–166 [CrossRef] [PubMed].
    [Google Scholar]
  27. Johnson L.M. , Bankaitis V.A. , Emr S.D. . ( 1987;). Distinct sequence determinants direct intracellular sorting and modification of a yeast vacuolar protease. Cell 48: 875–885 [CrossRef] [PubMed].
    [Google Scholar]
  28. Julius D. , Schekman R. , Thorner J. . ( 1984;). Glycosylation and processing of prepro-alpha-factor through the yeast secretory pathway. Cell 36: 309–318 [CrossRef] [PubMed].
    [Google Scholar]
  29. Kleizen B. , Braakman I. . ( 2004;). Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16: 343–349 [CrossRef] [PubMed].
    [Google Scholar]
  30. Klionsky D.J. , Herman P.K. , Emr S.D. . ( 1990;). The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54: 266–292 [PubMed].
    [Google Scholar]
  31. Kobayashi K. . ( 2006;). Summary of recombinant human serum albumin development. Biologicals 34: 55–59 [CrossRef] [PubMed].
    [Google Scholar]
  32. Kobayashi K. , Kuwae S. , Ohya T. , Ohda T. , Ohyama M. , Tomomitsu K. . ( 2000;). High level secretion of recombinant human serum albumin by fed-batch fermentation of the methylotrophic yeast, Pichia pastoris, based on optimal methanol feeding strategy. J Biosci Bioeng 90: 280–288 [CrossRef] [PubMed].
    [Google Scholar]
  33. Kottmeier K. , Ostermann K. , Bley T. , Rödel G. . ( 2011;). Hydrophobin signal sequence mediates efficient secretion of recombinant proteins in Pichia pastoris . Appl Microbiol Biotechnol 91: 133–141 [CrossRef] [PubMed].
    [Google Scholar]
  34. Kunze I. , Hensel G. , Adler K. , Bernard J. , Neubohn B. , Nilsson C. , Stoltenburg R. , Kohlwein S.D. , Kunze G. . ( 1999;). The green fluorescent protein targets secretory proteins to the yeast vacuole. Biochim Biophys Acta 1410: 287–298 [CrossRef] [PubMed].
    [Google Scholar]
  35. Kurtzman C.P. . ( 2005;). Description of Komagataella phaffii sp. nov. and the transfer of Pichia pseudopastoris to the methylotrophic yeast genus Komagataella . Int J Syst Evol Microbiol 55: 973–976 [CrossRef] [PubMed].
    [Google Scholar]
  36. Lin-Cereghino G.P. , Stark C.M. , Kim D. , Chang J. , Shaheen N. , Poerwanto H. , Agari K. , Moua P. , Low L.K. , other authors . ( 2013;). The effect of α-mating factor secretion signal mutations on recombinant protein expression in Pichia pastoris . Gene 519: 311–317 [CrossRef] [PubMed].
    [Google Scholar]
  37. Macauley-Patrick S. , Fazenda M.L. , McNeil B. , Harvey L.M. . ( 2005;). Heterologous protein production using the Pichia pastoris expression system. Yeast 22: 249–270 [CrossRef] [PubMed].
    [Google Scholar]
  38. Martoglio B. , Dobberstein B. . ( 1998;). Signal sequences: more than just greasy peptides. Trends Cell Biol 8: 410–415 [CrossRef] [PubMed].
    [Google Scholar]
  39. Mattanovich D. , Graf A. , Stadlmann J. , Dragosits M. , Redl A. , Maurer M. , Kleinheinz M. , Sauer M. , Altmann F. , Gasser B. . ( 2009;). Genome, secretome and glucose transport highlight unique features of the protein production host Pichia pastoris . Microb Cell Fact 8: 29 [CrossRef] [PubMed].
    [Google Scholar]
  40. Mattanovich D. , Branduardi P. , Dato L. , Gasser B. , Sauer M. , Porro D. . ( 2012;). Recombinant protein production in yeasts. Methods Mol Biol 824: 329–358 [CrossRef] [PubMed].
    [Google Scholar]
  41. Ng D.T. , Brown J.D. , Walter P. . ( 1996;). Signal sequences specify the targeting route to the endoplasmic reticulum membrane. J Cell Biol 134: 269–278 [CrossRef] [PubMed].
    [Google Scholar]
  42. Parr C.L. , Keates R.A. , Bryksa B.C. , Ogawa M. , Yada R.Y. . ( 2007;). The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24: 467–480 [CrossRef] [PubMed].
    [Google Scholar]
  43. Prielhofer R. , Maurer M. , Klein J. , Wenger J. , Kiziak C. , Gasser B. , Mattanovich D. . ( 2013;). Induction without methanol: novel regulated promoters enable high-level expression in Pichia pastoris . Microb Cell Fact 12: 5 [CrossRef] [PubMed].
    [Google Scholar]
  44. Rockwell N.C. , Krysan D.J. , Komiyama T. , Fuller R.S. . ( 2002;). Precursor processing by kex2/furin proteases. Chem Rev 102: 4525–4548 [CrossRef] [PubMed].
    [Google Scholar]
  45. Rossanese O.W. , Soderholm J. , Bevis B.J. , Sears I.B. , O'Connor J. , Williamson E.K. , Glick B.S. . ( 1999;). Golgi structure correlates with transitional endoplasmic reticulum organization in Pichia pastoris Saccharomyces cerevisiae . J Cell Biol 145: 69–81 [CrossRef] [PubMed].
    [Google Scholar]
  46. Ruggiano A. , Foresti O. , Carvalho P. . ( 2014;). Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol 204: 869–879 [CrossRef] [PubMed].
    [Google Scholar]
  47. Salunkhe S. , Soorapaneni S. , Prasad K.S. , Raiker V.A. , Padmanabhan S. . ( 2010;). Strategies to maximize expression of rightly processed human interferon alpha2b in Pichia pastoris . Protein Expr Purif 71: 139–146 [CrossRef] [PubMed].
    [Google Scholar]
  48. Schaefer J.V. , Plückthun A. . ( 2012;). Engineering aggregation resistance in IgG by two independent mechanisms: lessons from comparison of Pichia pastoris and mammalian cell expression. J Mol Biol 417: 309–335 [CrossRef] [PubMed].
    [Google Scholar]
  49. Stadlmayr G. , Mecklenbräuker A. , Rothmüller M. , Maurer M. , Sauer M. , Mattanovich D. , Gasser B. . ( 2010;). Identification and characterisation of novel Pichia pastoris promoters for heterologous protein production. J Biotechnol 150: 519–529 [CrossRef] [PubMed].
    [Google Scholar]
  50. Steinlein L.M. , Graf T.N. , Ikeda R.A. . ( 1995;). Production and purification of N-terminal half-transferrin in Pichia pastoris . Protein Expr Purif 6: 619–624 [CrossRef] [PubMed].
    [Google Scholar]
  51. Suda Y. , Nakano A. . ( 2012;). The yeast Golgi apparatus. Traffic 13: 505–510 [CrossRef] [PubMed].
    [Google Scholar]
  52. Thibault G. , Ng D.T.W. . ( 2012;). The endoplasmic reticulum-associated degradation pathways of budding yeast. Cold Spring Harb Perspect Biol 4: a013193 [CrossRef] [PubMed].
    [Google Scholar]
  53. Tschopp J.F. , Brust P.F. , Cregg J.M. , Stillman C.A. , Gingeras T.R. . ( 1987;). Expression of the lacZ gene from two methanol-regulated promoters in Pichia pastoris . Nucleic Acids Res 15: 3859–3876 [CrossRef] [PubMed].
    [Google Scholar]
  54. Valls L.A. , Hunter C.P. , Rothman J.H. , Stevens T.H. . ( 1987;). Protein sorting in yeast: the localization determinant of yeast vacuolar carboxypeptidase Y resides in the propeptide. Cell 48: 887–897 [CrossRef] [PubMed].
    [Google Scholar]
  55. Vida T.A. , Emr S.D. . ( 1995;). A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128: 779–792 [CrossRef] [PubMed].
    [Google Scholar]
  56. von Heijne G. . ( 1984;). Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J 3: 2315–2318 [PubMed].
    [Google Scholar]
  57. Wang P. , Huang L. , Jiang H. , Tian J. , Chu X. , Wu N. . ( 2014;). Improving the secretion of a methyl parathion hydrolase in Pichia pastoris by modifying its N-terminal sequence. PLoS One 9: e96974 [CrossRef] [PubMed].
    [Google Scholar]
  58. Waters M.G. , Evans E.A. , Blobel G. . ( 1988;). Prepro-alpha-factor has a cleavable signal sequence. J Biol Chem 263: 6209–6214 [PubMed].
    [Google Scholar]
  59. Zhang B. , Chang A. , Kjeldsen T.B. , Arvan P. . ( 2001;). Intracellular retention of newly synthesized insulin in yeast is caused by endoproteolytic processing in the Golgi complex. J Cell Biol 153: 1187–1198 [CrossRef] [PubMed].
    [Google Scholar]
  60. Zhao H.L. , He Q. , Xue C. , Sun B. , Yao X.Q. , Liu Z.M. . ( 2009;). Secretory expression of glycosylated and aglycosylated mutein of onconase from Pichia pastoris using different secretion signals and their purification and characterization. FEMS Yeast Res 9: 591–599 [CrossRef] [PubMed].
    [Google Scholar]
  61. Zimmermann R. , Eyrisch S. , Ahmad M. , Helms V. . ( 2011;). Protein translocation across the ER membrane. Biochim Biophys Acta 1808: 912–924 [CrossRef] [PubMed].
    [Google Scholar]
  62. Zsebo K.M. , Lu H.S. , Fieschko J.C. , Goldstein L. , Davis J. , Duker K. , Suggs S.V. , Lai P.H. , Bitter G.A. . ( 1986;). Protein secretion from Saccharomyces cerevisiae directed by the prepro-alpha-factor leader region. J Biol Chem 261: 5858–5865 [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000105
Loading
/content/journal/micro/10.1099/mic.0.000105
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error