We investigated the potential of bacteriophages alone as well as in combination with xylitol for tackling mixed-species biofilm of and . When mixed-species biofilm was established on polycarbonate discs, formed the base layer which was physically shielded on the top by Thereafter, mixed-species biofilm was treated with bacteriophages. -specific depolymerase-producing phage KPO1K2 caused significant reduction in the count of . In contrast, -specific non-depolymerase-producing phage Pa29 failed to cause any reduction in the count of . However, application of both phages together resulted in significant reduction in the count of both organisms. This suggests that depolymerase produced by phage KPO1K2 hydrolysed the top layer of and guided the entry of Pa29 to reach lying underneath. This phenomenon was confirmed when -specific non-depolymerase-producing phage NDP was used along with Pa29. Pa29 could not penetrate and reach its host bacterium. Xylitol worked synergistically along with the phage, resulting in a significant decrease in counts of both organisms. Disruption of mixed species biofilm by phage and xylitol was confirmed on the basis of the amount of protein and DNA released. This phage-based approach to altering the structural pattern and disrupting the mixed species biofilm is the first of its kind. It can be used as a topical application, a coating for foreign bodies or for aerosol delivery to tackle infections where both pathogens coexist in a biofilm mode.


Article metrics loading...

Loading full text...

Full text loading...



  1. Abbas H.A., Serry F.M., El-Masry E.M. (2012). Synergic interaction between antibiotics and the artificial sweeteners xylitol and sorbitol against Pseudomonas aeruginosa biofilmsAsian J Pharm Res 2129131. [Google Scholar]
  2. Adams M.H. (1959). BacteriophagesNew YorkInterscience Publishers. [Google Scholar]
  3. Ammons M.C., Ward L.S., Fisher S.T., Wolcott R.D., James G.A. (2009). In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitolInt J Antimicrob Agents 33230236 [View Article][PubMed]. [Google Scholar]
  4. An D., Danhorn T., Fuqua C., Parsek M.R. (2006). Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa Agrobacterium tumefaciens in biofilm coculturesProc Natl Acad Sci U S A 10338283833 [View Article][PubMed]. [Google Scholar]
  5. Anderl J.N., Franklin M.J., Stewart P.S. (2000). Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacinAntimicrob Agents Chemother 4418181824 [View Article][PubMed]. [Google Scholar]
  6. Bedi M.S., Verma V., Chhibber S. (2009). Amoxicillin and specific bacteriophage can be used together for the eradication of biofilm of Klebsiella pneumoniae B5055World J Microbiol Biotechnol 2511451151 [View Article]. [Google Scholar]
  7. Ceri H., Olson M.E., Stremick C., Read R.R., Morck D., Buret A. (1999). The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilmsJ Clin Microbiol 3717711776[PubMed]. [Google Scholar]
  8. Chandrasekar P.H., Manavathu E.K. (2008). Do Aspergillus species produce biofilm?Future Microbiol 31921 [View Article][PubMed]. [Google Scholar]
  9. Childers B.M., Van Laar T.A., You T., Clegg S., Leung K.P. (2013). MrkD1P from Klebsiella pneumoniae strain IA565 allows for coexistence with Pseudomonas aeruginosa and protection from protease-mediated biofilm detachmentInfect Immun 8141124120 [View Article][PubMed]. [Google Scholar]
  10. Christensen B.B., Haagensen J.A., Heydorn A., Molin S. (2002). Metabolic commensalism and competition in a two-species microbial consortiumAppl Environ Microbiol 6824952502 [View Article][PubMed]. [Google Scholar]
  11. Cox S.D., Mann C.M., Markham J.L., Gustafson J.E., Warmington J.R., Wyllie S.G. (2001). Determining the antimicrobial actions of tea tree oilMolecules 68791 [View Article]. [Google Scholar]
  12. Donlan R.M., Costerton J.W. (2002). Biofilms: survival mechanisms of clinically relevant micro-organismsClin Microbiol Rev 15167193 [View Article][PubMed]. [Google Scholar]
  13. Drulis-Kawa Z., Majkowska-Skrobek G., Maciejewska B., Delattre A.S., Lavigne R. (2012). Learning from bacteriophages - advantages and limitations of phage and phage-encoded protein applicationsCurr Protein Pept Sci 13699722 [View Article][PubMed]. [Google Scholar]
  14. Filoche S.K., Anderson S.A., Sissons C.H. (2004). Biofilm growth of Lactobacillus species is promoted by Actinomyces species and Streptococcus mutans Oral Microbiol Immunol 19322326 [View Article][PubMed]. [Google Scholar]
  15. Furukawa H., Kuroiwa T., Mizushima S. (1983). DNA injection during bacteriophage tbl4 infection of Escherichia coli J Bacteriol 154938945[PubMed]. [Google Scholar]
  16. Ghezelbash G.R., Nahvi I., Rabbani M. (2012). Comparative inhibitory effect of xylitol and erythritol on the growth and biofilm formation of oral Streptococci Afr J Microbiol Res 644044408. [Google Scholar]
  17. Hall-Stoodley L., Stoodley P. (2005). Biofilm formation and dispersal and the transmission of human pathogensTrends Microbiol 13710 [View Article][PubMed]. [Google Scholar]
  18. Hughes K.A., Sutherland I.W., Jones M.V. (1998). Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymeraseMicrobiology 14430393047 [View Article][PubMed]. [Google Scholar]
  19. Ichikawa T., Yano Y., Fujita Y., Kashiwabara T., Nagao K. (2008). The enhancement effect of three sugar alcohols on the fungicidal effect of benzethonium chloride toward Candida albicans J Dent 36965968 [View Article][PubMed]. [Google Scholar]
  20. Jung W.K., Koo H.C., Kim K.W., Shin S., Kim S.H., Park Y.H. (2008). Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus Escherichia coli Appl Environ Microbiol 7421712178 [View Article][PubMed]. [Google Scholar]
  21. Kassa T., Chhibber S. (2012). Thermal treatment of the bacteriophage lysate of Klebsiella pneumoniae B5055 as a step for the purification of capsular depolymerase enzymeJ Virol Methods 179135141 [View Article][PubMed]. [Google Scholar]
  22. Kay M.K., Erwin T.C., McLean R.J.C., Aron G.M. (2011). Bacteriophage ecology in Escherichia coli Pseudomonas aeruginosa mixed-biofilm communitiesAppl Environ Microbiol 77821829 [View Article][PubMed]. [Google Scholar]
  23. Knoll B.M., Mylonakis E. (2014). Antibacterial bioagents based on principles of bacteriophage biology: an overviewClin Infect Dis 58528534 [View Article][PubMed]. [Google Scholar]
  24. Kumari S., Harjai K., Chhibber S. (2009). Characterization of Pseudomonas aeruginosa PAO specific bacteriophages isolated from sewage samplesAm J Biomed Sci 191102 [View Article]. [Google Scholar]
  25. Luca M.D., Maccari G., Nifosi R. (2014). Treatment of Microbial Biofilms in the Post Antibiotic Era: Prophylactic and Therapeutic Use of Antimicrobial Peptides and Their Design by Bioinformatics ToolsPathog Dis. 70257270[PubMed].[CrossRef] [Google Scholar]
  26. Lynch H., Milgrom P. (2003). Xylitol and dental caries: an overview for cliniciansJ Calif Dent Assoc 31205209[PubMed]. [Google Scholar]
  27. Mäkinen K.K., Söderling E.V.A. (1980). A quantitative study of mannitol, sorbitol, xylitol, and xylose in wild berries and commercial fruitsJ Food Sci 45367371 [View Article]. [Google Scholar]
  28. Palmer R.J. Jr, Kazmerzak K., Hansen M.C., Kolenbrander P.E. (2001). Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient sourceInfect Immun 6957945804 [View Article][PubMed]. [Google Scholar]
  29. Peters B.M., Jabra-Rizk M.A., O'May G.A., Costerton J.W., Shirtliff M.E. (2012). Polymicrobial interactions: impact on pathogenesis and human diseaseClin Microbiol Rev 25193213 [View Article][PubMed]. [Google Scholar]
  30. Siebel M.A., Characklis W.G. (1991). Observations of binary population biofilmsBiotechnol Bioeng 37778789 [View Article][PubMed]. [Google Scholar]
  31. Sillankorva S., Neubauer P., Azeredo J. (2010). Phage control of dual species biofilms of Pseudomonas fluorescens Staphylococcus lentus Biofouling 26567575 [View Article][PubMed]. [Google Scholar]
  32. Stewart P.S., Camper A.K., Handran S.D., Huang C., Warnecke M. (1997). Spatial distribution and coexistence of Klebsiella pneumoniae Pseudomonas aeruginosa in biofilmsMicrob Ecol 33210 [View Article][PubMed]. [Google Scholar]
  33. Thein Z.M., Samaranayake Y.H., Samaranayake L.P. (2007). Dietary sugars, serum and the biocide chlorhexidine digluconate modify the population and structural dynamics of mixed Candida albicans Escherichia coli biofilmsAPMIS 11512411251 [View Article][PubMed]. [Google Scholar]
  34. Uhari M., Tapiainen T., Kontiokari T. (2000). Xylitol in preventing acute otitis mediaVaccine 19(Suppl 1), S144S147 [View Article][PubMed]. [Google Scholar]
  35. Verma V., Harjai K., Chhibber S. (2009a). Characterization of a tbl7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agentCurr Microbiol 59274281 [View Article][PubMed]. [Google Scholar]
  36. Verma V., Harjai K., Chhibber S. (2009b). Restricting ciprofloxacin-induced resistant variant formation in biofilm of Klebsiella pneumoniae B5055 by complementary bacteriophage treatmentJ Antimicrob Chemother 6412121218 [View Article][PubMed]. [Google Scholar]
  37. Wolcott R.D., Rhoads D.D., Bennett M.E., Wolcott B.M., Gogokhia L., Costerton J.W., Dowd S.E. (2010). Chronic wounds and the medical biofilm paradigmJ Wound Care 194546, 48–50, 52–53 [View Article][PubMed]. [Google Scholar]
  38. Yoshida S., Ogawa N., Fujii T., Tsushima S. (2009). Enhanced biofilm formation and 3-chlorobenzoate degrading activity by the bacterial consortium of Burkholderia sp. NK8 and Pseudomonas aeruginosa PAO1J Appl Microbiol 106790800 [View Article][PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error