A plasmid-encoded UmuD homologue regulates expression of SOS genes Free

Abstract

The plasmid pUM505 contains the operon that encodes proteins similar to error-prone repair DNA polymerase V. The gene appears to be truncated and its product is probably not functional. The gene, renamed , possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the SOS-response LexA repressor. The gene caused increased MMC sensitivity when transferred to the PAO1 strain. As expected, PAO1-derived knockout mutant PW6037 showed resistance to MMC; however, when the gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the mutant with or without the pUC_umuD recombinant plasmid. Expression of , and genes increased 3.4–5.3 times in the mutant, relative to transcription of the corresponding genes in the strain, but decreased significantly in the / transformant. These results confirmed that the UmuDpR protein is a repressor of SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5′ regions of SOS genes, suggesting an indirect mechanism of regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000103
2015-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1516.html?itemId=/content/journal/micro/10.1099/mic.0.000103&mimeType=html&fmt=ahah

References

  1. Acosta-Navarrete Y.M., León-Márquez Y.L., Salinas-Herrera K., Jácome-Galarza I.E., Meza-Carmen V., Ramírez-Díaz M.I., Cervantes C. (2014). Expression of the six chromate ion transporter homologues of Burkholderia xenovorans LB400Microbiology 160287295 [View Article][PubMed]. [Google Scholar]
  2. Aranda J., Garrido M.E., Cortés P., Llagostera M., Barbé J. (2008). Analysis of the protective capacity of three Streptococcus suis proteins induced under divalent-cation-limited conditionsInfect Immun 7615901598 [View Article][PubMed]. [Google Scholar]
  3. Aranda J., Poza M., Shingu-Vázquez M., Cortés P., Boyce J.D., Adler B., Barbé J., Bou G. (2013). Identification of a DNA-damage-inducible regulon in Acinetobacter baumannii J Bacteriol 19555775582 [View Article][PubMed]. [Google Scholar]
  4. Bagdasarian M., D'Ari R., Filipowicz W., George J. (1980). Suppression of induction of SOS functions in an Escherichia coli tif-1 mutant by plasmid R100.1J Bacteriol 141464469[PubMed]. [Google Scholar]
  5. Bagdasarian M., Bailone A., Bagdasarian M.M., Manning P.A., Lurz R., Timmis K.N., Devoret R. (1986). An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli Proc Natl Acad Sci U S A 8357235726 [View Article][PubMed]. [Google Scholar]
  6. Bagdasarian M., Bailone A., Angulo J.F., Scholz P., Bagdasarian M., Devoret R. (1992). PsiB, and anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipientMol Microbiol 6885893 [View Article][PubMed]. [Google Scholar]
  7. Baharoglu Z., Mazel D. (2014). SOS, the formidable strategy of bacteria against aggressionsFEMS Microbiol Rev 3811261145 [View Article][PubMed]. [Google Scholar]
  8. Cervantes C., Ohtake H., Chu L., Misra T.K., Silver S. (1990). Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505J Bacteriol 172287291[PubMed]. [Google Scholar]
  9. Cirz R.T., O'Neill B.M., Hammond J.A., Head S.R., Romesberg F.E. (2006). Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacinJ Bacteriol 18871017110 [View Article][PubMed]. [Google Scholar]
  10. Fernández de Henestrosa A.R., Ogi T., Aoyagi S., Chafin D., Hayes J.J., Ohmori H., Woodgate R. (2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli Mol Microbiol 3515601572 [View Article][PubMed]. [Google Scholar]
  11. Fernández de Henestrosa A.R., Cuñé J., Mazón G., Dubbels B.L., Bazylinski D.A., Barbé J. (2003). Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1J Bacteriol 18544714482 [View Article][PubMed]. [Google Scholar]
  12. Galhardo R.S., Rocha R.P., Marques M.V., Menck C.F.M. (2005). An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus Nucleic Acids Res 3326032614 [View Article][PubMed]. [Google Scholar]
  13. Green M.R., Sambrook J. (2012). Molecular Cloning: a Laboratory Manual4th edn., Cold Spring Harbor, NYCold Spring Harbor Laboratory. [Google Scholar]
  14. Hare J.M., Perkins S.N., Gregg-Jolly L.A. (2006). A constitutively expressed, truncated umuDC operon regulates the recA-dependent DNA damage induction of a gene in Acinetobacter baylyi strain ADP1Appl Environ Microbiol 7240364043 [View Article][PubMed]. [Google Scholar]
  15. Hare J.M., Adhikari S., Lambert K.V., Hare A.E., Grice A.N. (2012). The Acinetobacter regulatory UmuDAb protein cleaves in response to DNA damage with chimeric LexA/UmuD characteristicsFEMS Microbiol Lett 3345765 [View Article][PubMed]. [Google Scholar]
  16. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B.L., other authors. (2006). Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110Mol Syst Biol 20007 [View Article][PubMed]. [Google Scholar]
  17. Ippoliti P.J., Delateur N.A., Jones K.M., Beuning P.J. (2012). Multiple strategies for translesion synthesis in bacteriaCells 1799831 [View Article][PubMed]. [Google Scholar]
  18. Jacobs M.A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C., other authors. (2003). Comprehensive transposon mutant library of Pseudomonas aeruginosa Proc Natl Acad Sci U S A 1001433914344 [View Article][PubMed]. [Google Scholar]
  19. Kitagawa Y., Akaboshi E., Shinagawa H., Horii T., Ogawa H., Kato T. (1985). Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli Proc Natl Acad Sci U S A 8243364340 [View Article][PubMed]. [Google Scholar]
  20. Kivisaar M. (2010). Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonadsFEMS Microbiol Lett 312114 [View Article][PubMed]. [Google Scholar]
  21. Li L.L., Malone J.E., Iglewski B.H. (2007). Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsRJ Bacteriol 18943674374 [View Article][PubMed]. [Google Scholar]
  22. Luo Y., Pfuetzner R.A., Mosimann S., Paetzel M., Frey E.A., Cherney M., Kim B., Little J.W., Strynadka N.C. (2001). Crystal structure of LexA: a conformational switch for regulation of self-cleavageCell 106585594 [View Article][PubMed]. [Google Scholar]
  23. Nohmi T. (2006). Environmental stress and lesion-bypass DNA polymerasesAnnu Rev Microbiol 60231253 [View Article][PubMed]. [Google Scholar]
  24. Patel M., Jiang Q., Woodgate R., Cox M.M., Goodman M.F. (2010). A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase VCrit Rev Biochem Mol Biol 45171184 [View Article][PubMed]. [Google Scholar]
  25. Petrova V., Chitteni-Pattu S., Drees J.C., Inman R.B., Cox M.M. (2009). An SOS inhibitor that binds to free RecA protein: the PsiB proteinMol Cell 36121130 [View Article][PubMed]. [Google Scholar]
  26. Preston M.J., Seed P.C., Toder D.S., Iglewski B.H., Ohman D.E., Gustin J.K., Goldberg J.B., Pier G.B. (1997). Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infectionsInfect Immun 6530863090[PubMed]. [Google Scholar]
  27. Qi Y., Patra G., Liang X., Williams L.E., Rose S., Redkar R.J., DelVecchio V.G. (2001). Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis Appl Environ Microbiol 6737203727 [View Article][PubMed]. [Google Scholar]
  28. Ramírez-Díaz M.I., Díaz-Pérez C., Vargas E., Riveros-Rosas H., Campos-García J., Cervantes C. (2008). Mechanisms of bacterial resistance to chromium compoundsBiometals 21321332 [View Article][PubMed]. [Google Scholar]
  29. Ramírez-Díaz M.I., Díaz-Magaña A., Meza-Carmen V., Johnstone L., Cervantes C., Rensing C. (2011). Nucleotide sequence of Pseudomonas aeruginosa conjugative plasmid pUM505 containing virulence and heavy-metal resistance genesPlasmid 66718 [View Article][PubMed]. [Google Scholar]
  30. Sutton M.D., Kim M., Walker G.C. (2001). Genetic and biochemical characterization of a novel umuD mutation: insights into a mechanism for UmuD self-cleavageJ Bacteriol 183347357 [View Article][PubMed]. [Google Scholar]
  31. Tark M., Tover A., Tarassova K., Tegova R., Kivi G., Hõrak R., Kivisaar M. (2005). A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stressJ Bacteriol 18752035213 [View Article][PubMed]. [Google Scholar]
  32. Walker G.C. (1984). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli Microbiol Rev 486093[PubMed]. [Google Scholar]
  33. Watanabe S., Takada Y. (2004). Amino acid residues involved in cold adaptation of isocitrate lyase from a psychrophilic bacterium, Colwellia maris Microbiology 15033933403 [View Article][PubMed]. [Google Scholar]
  34. West S.E., Schweizer H.P., Dall C., Sample A.K., Runyen-Janecky L.J. (1994). Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa Gene 1488186 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000103
Loading
/content/journal/micro/10.1099/mic.0.000103
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited Most Cited RSS feed