1887

Abstract

The plasmid pUM505 contains the operon that encodes proteins similar to error-prone repair DNA polymerase V. The gene appears to be truncated and its product is probably not functional. The gene, renamed , possesses an SOS box overlapped with a Sigma factor 70 type promoter; accordingly, transcriptional fusions revealed that the gene promoter is activated by mitomycin C. The predicted sequence of the UmuDpR protein displays 23 % identity with the SOS-response LexA repressor. The gene caused increased MMC sensitivity when transferred to the PAO1 strain. As expected, PAO1-derived knockout mutant PW6037 showed resistance to MMC; however, when the gene was transferred to PW6037, MMC resistance level was reduced. These data suggested that UmuDpR represses the expression of SOS genes, as LexA does. To test whether UmuDpR exerts regulatory functions, expression of PAO1 SOS genes was evaluated by reverse transcription quantitative PCR assays in the mutant with or without the pUC_umuD recombinant plasmid. Expression of , and genes increased 3.4–5.3 times in the mutant, relative to transcription of the corresponding genes in the strain, but decreased significantly in the / transformant. These results confirmed that the UmuDpR protein is a repressor of SOS genes controlled by LexA. Electrophoretic mobility shift assays, however, did not show binding of UmuDpR to 5′ regions of SOS genes, suggesting an indirect mechanism of regulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000103
2015-07-01
2020-11-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1516.html?itemId=/content/journal/micro/10.1099/mic.0.000103&mimeType=html&fmt=ahah

References

  1. Acosta-Navarrete Y.M., León-Márquez Y.L., Salinas-Herrera K., Jácome-Galarza I.E., Meza-Carmen V., Ramírez-Díaz M.I., Cervantes C.. ( 2014;). Expression of the six chromate ion transporter homologues of Burkholderia xenovorans LB400. Microbiology 160: 287–295 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aranda J., Garrido M.E., Cortés P., Llagostera M., Barbé J.. ( 2008;). Analysis of the protective capacity of three Streptococcus suis proteins induced under divalent-cation-limited conditions. Infect Immun 76: 1590–1598 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aranda J., Poza M., Shingu-Vázquez M., Cortés P., Boyce J.D., Adler B., Barbé J., Bou G.. ( 2013;). Identification of a DNA-damage-inducible regulon in Acinetobacter baumannii. J Bacteriol 195: 5577–5582 [CrossRef] [PubMed].
    [Google Scholar]
  4. Bagdasarian M., D'Ari R., Filipowicz W., George J.. ( 1980;). Suppression of induction of SOS functions in an Escherichia coli tif-1 mutant by plasmid R100.1. J Bacteriol 141: 464–469 [PubMed].
    [Google Scholar]
  5. Bagdasarian M., Bailone A., Bagdasarian M.M., Manning P.A., Lurz R., Timmis K.N., Devoret R.. ( 1986;). An inhibitor of SOS induction, specified by a plasmid locus in Escherichia coli. Proc Natl Acad Sci U S A 83: 5723–5726 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bagdasarian M., Bailone A., Angulo J.F., Scholz P., Bagdasarian M., Devoret R.. ( 1992;). PsiB, and anti-SOS protein, is transiently expressed by the F sex factor during its transmission to an Escherichia coli K-12 recipient. Mol Microbiol 6: 885–893 [CrossRef] [PubMed].
    [Google Scholar]
  7. Baharoglu Z., Mazel D.. ( 2014;). SOS, the formidable strategy of bacteria against aggressions. FEMS Microbiol Rev 38: 1126–1145 [CrossRef] [PubMed].
    [Google Scholar]
  8. Cervantes C., Ohtake H., Chu L., Misra T.K., Silver S.. ( 1990;). Cloning, nucleotide sequence, and expression of the chromate resistance determinant of Pseudomonas aeruginosa plasmid pUM505. J Bacteriol 172: 287–291 [PubMed].
    [Google Scholar]
  9. Cirz R.T., O'Neill B.M., Hammond J.A., Head S.R., Romesberg F.E.. ( 2006;). Defining the Pseudomonas aeruginosa SOS response and its role in the global response to the antibiotic ciprofloxacin. J Bacteriol 188: 7101–7110 [CrossRef] [PubMed].
    [Google Scholar]
  10. Fernández de Henestrosa A.R., Ogi T., Aoyagi S., Chafin D., Hayes J.J., Ohmori H., Woodgate R.. ( 2000;). Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35: 1560–1572 [CrossRef] [PubMed].
    [Google Scholar]
  11. Fernández de Henestrosa A.R., Cuñé J., Mazón G., Dubbels B.L., Bazylinski D.A., Barbé J.. ( 2003;). Characterization of a new LexA binding motif in the marine magnetotactic bacterium strain MC-1. J Bacteriol 185: 4471–4482 [CrossRef] [PubMed].
    [Google Scholar]
  12. Galhardo R.S., Rocha R.P., Marques M.V., Menck C.F.M.. ( 2005;). An SOS-regulated operon involved in damage-inducible mutagenesis in Caulobacter crescentus. Nucleic Acids Res 33: 2603–2614 [CrossRef] [PubMed].
    [Google Scholar]
  13. Green M.R., Sambrook J.. ( 2012;). Molecular Cloning: a Laboratory Manual, 4th edn.., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  14. Hare J.M., Perkins S.N., Gregg-Jolly L.A.. ( 2006;). A constitutively expressed, truncated umuDC operon regulates the recA-dependent DNA damage induction of a gene in Acinetobacter baylyi strain ADP1. Appl Environ Microbiol 72: 4036–4043 [CrossRef] [PubMed].
    [Google Scholar]
  15. Hare J.M., Adhikari S., Lambert K.V., Hare A.E., Grice A.N.. ( 2012;). The Acinetobacter regulatory UmuDAb protein cleaves in response to DNA damage with chimeric LexA/UmuD characteristics. FEMS Microbiol Lett 334: 57–65 [CrossRef] [PubMed].
    [Google Scholar]
  16. Hayashi K., Morooka N., Yamamoto Y., Fujita K., Isono K., Choi S., Ohtsubo E., Baba T., Wanner B.L., other authors. ( 2006;). Highly accurate genome sequences of Escherichia coli K-12 strains MG1655 and W3110. Mol Syst Biol 2: 0007 [CrossRef] [PubMed].
    [Google Scholar]
  17. Ippoliti P.J., Delateur N.A., Jones K.M., Beuning P.J.. ( 2012;). Multiple strategies for translesion synthesis in bacteria. Cells 1: 799–831 [CrossRef] [PubMed].
    [Google Scholar]
  18. Jacobs M.A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C., other authors. ( 2003;). Comprehensive transposon mutant library of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100: 14339–14344 [CrossRef] [PubMed].
    [Google Scholar]
  19. Kitagawa Y., Akaboshi E., Shinagawa H., Horii T., Ogawa H., Kato T.. ( 1985;). Structural analysis of the umu operon required for inducible mutagenesis in Escherichia coli. Proc Natl Acad Sci U S A 82: 4336–4340 [CrossRef] [PubMed].
    [Google Scholar]
  20. Kivisaar M.. ( 2010;). Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads. FEMS Microbiol Lett 312: 1–14 [CrossRef] [PubMed].
    [Google Scholar]
  21. Li L.L., Malone J.E., Iglewski B.H.. ( 2007;). Regulation of the Pseudomonas aeruginosa quorum-sensing regulator VqsR. J Bacteriol 189: 4367–4374 [CrossRef] [PubMed].
    [Google Scholar]
  22. Luo Y., Pfuetzner R.A., Mosimann S., Paetzel M., Frey E.A., Cherney M., Kim B., Little J.W., Strynadka N.C.. ( 2001;). Crystal structure of LexA: a conformational switch for regulation of self-cleavage. Cell 106: 585–594 [CrossRef] [PubMed].
    [Google Scholar]
  23. Nohmi T.. ( 2006;). Environmental stress and lesion-bypass DNA polymerases. Annu Rev Microbiol 60: 231–253 [CrossRef] [PubMed].
    [Google Scholar]
  24. Patel M., Jiang Q., Woodgate R., Cox M.M., Goodman M.F.. ( 2010;). A new model for SOS-induced mutagenesis: how RecA protein activates DNA polymerase V. Crit Rev Biochem Mol Biol 45: 171–184 [CrossRef] [PubMed].
    [Google Scholar]
  25. Petrova V., Chitteni-Pattu S., Drees J.C., Inman R.B., Cox M.M.. ( 2009;). An SOS inhibitor that binds to free RecA protein: the PsiB protein. Mol Cell 36: 121–130 [CrossRef] [PubMed].
    [Google Scholar]
  26. Preston M.J., Seed P.C., Toder D.S., Iglewski B.H., Ohman D.E., Gustin J.K., Goldberg J.B., Pier G.B.. ( 1997;). Contribution of proteases and LasR to the virulence of Pseudomonas aeruginosa during corneal infections. Infect Immun 65: 3086–3090 [PubMed].
    [Google Scholar]
  27. Qi Y., Patra G., Liang X., Williams L.E., Rose S., Redkar R.J., DelVecchio V.G.. ( 2001;). Utilization of the rpoB gene as a specific chromosomal marker for real-time PCR detection of Bacillus anthracis. Appl Environ Microbiol 67: 3720–3727 [CrossRef] [PubMed].
    [Google Scholar]
  28. Ramírez-Díaz M.I., Díaz-Pérez C., Vargas E., Riveros-Rosas H., Campos-García J., Cervantes C.. ( 2008;). Mechanisms of bacterial resistance to chromium compounds. Biometals 21: 321–332 [CrossRef] [PubMed].
    [Google Scholar]
  29. Ramírez-Díaz M.I., Díaz-Magaña A., Meza-Carmen V., Johnstone L., Cervantes C., Rensing C.. ( 2011;). Nucleotide sequence of Pseudomonas aeruginosa conjugative plasmid pUM505 containing virulence and heavy-metal resistance genes. Plasmid 66: 7–18 [CrossRef] [PubMed].
    [Google Scholar]
  30. Sutton M.D., Kim M., Walker G.C.. ( 2001;). Genetic and biochemical characterization of a novel umuD mutation: insights into a mechanism for UmuD self-cleavage. J Bacteriol 183: 347–357 [CrossRef] [PubMed].
    [Google Scholar]
  31. Tark M., Tover A., Tarassova K., Tegova R., Kivi G., Hõrak R., Kivisaar M.. ( 2005;). A DNA polymerase V homologue encoded by TOL plasmid pWW0 confers evolutionary fitness on Pseudomonas putida under conditions of environmental stress. J Bacteriol 187: 5203–5213 [CrossRef] [PubMed].
    [Google Scholar]
  32. Walker G.C.. ( 1984;). Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48: 60–93 [PubMed].
    [Google Scholar]
  33. Watanabe S., Takada Y.. ( 2004;). Amino acid residues involved in cold adaptation of isocitrate lyase from a psychrophilic bacterium, Colwellia maris. Microbiology 150: 3393–3403 [CrossRef] [PubMed].
    [Google Scholar]
  34. West S.E., Schweizer H.P., Dall C., Sample A.K., Runyen-Janecky L.J.. ( 1994;). Construction of improved Escherichia-Pseudomonas shuttle vectors derived from pUC18/19 and sequence of the region required for their replication in Pseudomonas aeruginosa. Gene 148: 81–86 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000103
Loading
/content/journal/micro/10.1099/mic.0.000103
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error