acetoacetyl-CoA thiolase is a dual-localizing enzyme that localizes to peroxisomes, mitochondria and the cytosol Free

Abstract

Acetoacetyl-CoA thiolase is an enzyme that catalyses both the CoA-dependent thiolytic cleavage of acetoacetyl-CoA and the reverse condensation reaction. In acetoacetyl-CoA thiolase (Acat) is encoded by a single gene. The aim of this study was to assess the localization of Acat and to determine the mechanism of its cellular localization. Subcellular localization of Acat was investigated using a fusion protein with GFP, and it was found to be localized to peroxisomes. The findings showed that the targeting signal of Acat to peroxisomes is a unique nonapeptide sequence (15RMYTTAKNL23) similar to the conserved peroxisomal targeting signal-2 (PTS-2). Cell fractionation experiments revealed that Acat also exists in the cytosol. Distribution to the cytosol was caused by translational initiation from the second Met codon at position 16. The first 18 N-terminal residues also exhibited function as a mitochondrial targeting signal (MTS). These results indicate that Acat is a dual-localizing enzyme that localizes to peroxisomes, mitochondria and the cytosol using both PTS-2 and MTS signals, which overlap each other near the N-terminus, and the alternative utilization of start codons.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000102
2015-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1471.html?itemId=/content/journal/micro/10.1099/mic.0.000102&mimeType=html&fmt=ahah

References

  1. Addya S., Anandatheerthavarada H.K., Biswas G., Bhagwat S.V., Mullick J., Avadhani N.G. (1997). Targeting of NH2-terminal-processed microsomal protein to mitochondria: a novel pathway for the biogenesis of hepatic mitochondrial P450MT2J Cell Biol 139589599 [View Article][PubMed]. [Google Scholar]
  2. Antonenkov V.D., Croes K., Waelkens E., Van Veldhoven P.P., Mannaerts G.P. (2000). Identification, purification and characterization of an acetoacetyl-CoA thiolase from rat liver peroxisomesEur J Biochem 26729812990 [View Article][PubMed]. [Google Scholar]
  3. Ashmarina L.I., Pshezhetsky A.V., Branda S.S., Isaya G., Mitchell G.A. (1999). 3-Hydroxy-3-methylglutaryl coenzyme A lyase: targeting and processing in peroxisomes and mitochondriaJ Lipid Res 407075[PubMed]. [Google Scholar]
  4. Ast J., Stiebler A.C., Freitag J., Bölker M. (2013). Dual targeting of peroxisomal proteinsFront Physiol 4297 [View Article][PubMed]. [Google Scholar]
  5. Bodył A., Mackiewicz P. (2007). Analysis of the targeting sequences of an iron-containing superoxide dismutase (SOD) of the dinoflagellate Lingulodinium polyedrum suggests function in multiple cellular compartmentsArch Microbiol 187281296 [View Article][PubMed]. [Google Scholar]
  6. Czarna M., Mathy G., Mac'Cord A., Dobson R., Jarmuszkiewicz W., Sluse-Goffart C.M., Leprince P., De Pauw E., Sluse F.E. (2010). Dynamics of the Dictyostelium discoideum mitochondrial proteome during vegetative growth, starvation and early stages of developmentProteomics 10622 [View Article][PubMed]. [Google Scholar]
  7. Dinur-Mills M., Tal M., Pines O. (2008). Dual targeted mitochondrial proteins are characterized by lower MTS parameters and total net chargePLoS One 3e2161 [View Article][PubMed]. [Google Scholar]
  8. Eichinger L., Pachebat J.A., Glöckner G., Rajandream M.-A., Sucgang R., Berriman M., Song J., Olsen R., Szafranski K., other authors. (2005). The genome of the social amoeba Dictyostelium discoideum Nature 4354357 [View Article][PubMed]. [Google Scholar]
  9. Elgersma Y., Vos A., van den Berg M., van Roermund C.W., van der Sluijs P., Distel B., Tabak H.F. (1996). Analysis of the carboxyl-terminal peroxisomal targeting signal 1 in a homologous context in Saccharomyces cerevisiae J Biol Chem 2712637526382 [View Article][PubMed]. [Google Scholar]
  10. Filppula S.A., Yagi A.I., Kilpeläinen S.H., Novikov D., FitzPatrick D.R., Vihinen M., Valle D., Hiltunen J.K. (1998). Δ3,52,4-dienoyl-CoA isomerase from rat liver. Molecular characterization. J Biol Chem 273349355 [View Article][PubMed]. [Google Scholar]
  11. Gakh O., Cavadini P., Isaya G. (2002). Mitochondrial processing peptidasesBiochim Biophys Acta 15926377 [View Article][PubMed]. [Google Scholar]
  12. Gatto G.J. Jr, Geisbrecht B.V., Gould S.J., Berg J.M. (2000). Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5Nat Struct Biol 710911095 [View Article][PubMed]. [Google Scholar]
  13. Gavel Y., von Heijne G. (1990). Cleavage-site motifs in mitochondrial targeting peptidesProtein Eng 43337 [View Article][PubMed]. [Google Scholar]
  14. Gould S.G., Keller G.A., Subramani S. (1987). Identification of a peroxisomal targeting signal at the carboxy terminus of firefly luciferaseJ Cell Biol 10529232931 [View Article][PubMed]. [Google Scholar]
  15. Heiland I., Erdmann R. (2005). Biogenesis of peroxisomes. Topogenesis of the peroxisomal membrane and matrix proteinsFEBS J 27223622372 [View Article][PubMed]. [Google Scholar]
  16. Hovik R., Brodal B., Bartlett K., Osmundsen H. (1991). Metabolism of acetyl-CoA by isolated peroxisomal fractions: formation of acetate and acetoacetyl-CoAJ Lipid Res 32993999[PubMed]. [Google Scholar]
  17. Howard P.K., Ahern K.G., Firtel R.A. (1988). Establishment of a transient expression system for Dictyostelium discoideum Nucleic Acids Res 1626132623 [View Article][PubMed]. [Google Scholar]
  18. Huang Y.-C., Chen Y.-H., Lo S.-R., Liu C.-I., Wang C.-W., Chang W.-T. (2004). Disruption of the peroxisomal citrate synthase CshA affects cell growth and multicellular development in Dictyostelium discoideum Mol Microbiol 538191 [View Article][PubMed]. [Google Scholar]
  19. Kurihara T., Ueda M., Kanayama N., Kondo J., Teranishi Y., Tanaka A. (1992). Peroxisomal acetoacetyl-CoA thiolase of an n-alkane-utilizing yeast, Candida tropicalis Eur J Biochem 2109991005 [View Article][PubMed]. [Google Scholar]
  20. Kurochkin I.V., Mizuno Y., Konagaya A., Sakaki Y., Schönbach C., Okazaki Y. (2007). Novel peroxisomal protease Tysnd1 processes PTS1- and PTS2-containing enzymes involved in β-oxidation of fatty acidsEMBO J 26835845 [View Article][PubMed]. [Google Scholar]
  21. Lazarow P.B. (2006). The import receptor Pex7p and the PTS2 targeting sequenceBiochim Biophys Acta 176315991604 [View Article][PubMed]. [Google Scholar]
  22. Matsuoka S., Saito T., Kuwayama H., Morita N., Ochiai H., Maeda M. (2003). MFE1, a member of the peroxisomal hydroxyacyl coenzyme A dehydrogenase family, affects fatty acid metabolism necessary for morphogenesis in Dictyostelium sppEukaryot Cell 2638645 [View Article][PubMed]. [Google Scholar]
  23. Nagayama K., Ohmachi T. (2010). Mitochondrial processing peptidase activity is controlled by the processing of α-MPP during development in Dictyostelium discoideum Microbiology 156978989 [View Article][PubMed]. [Google Scholar]
  24. Nagayama K., Itono S., Yoshida T., Ishiguro S., Ochiai H., Ohmachi T. (2008). Antisense RNA inhibition of the β subunit of the Dictyostelium discoideum mitochondrial processing peptidase induces the expression of mitochondrial proteinsBiosci Biotechnol Biochem 7218361846 [View Article][PubMed]. [Google Scholar]
  25. Nuttall J.M., Hettema E.H., Watts D.J. (2012). Farnesyl diphosphate synthase, the target for nitrogen-containing bisphosphonate drugs, is a peroxisomal enzyme in the model system Dictyostelium discoideum Biochem J 447353361 [View Article][PubMed]. [Google Scholar]
  26. Olivier L.M., Kovacs W., Masuda K., Keller G.-A., Krisans S.K. (2000). Identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes. AA-CoA thiolase, HMG-CoA synthase, MPPD, and FPP synthaseJ Lipid Res 4119211935[PubMed]. [Google Scholar]
  27. Paschke P., Pawolleck N., Haenel F., Otto H., Rühling H., Maniak M. (2012). The isoform B of the Dictyostelium long-chain fatty-acyl-coenzyme A synthetase is initially inserted into the ER and subsequently provides peroxisomes with an activity important for efficient phagocytosisEur J Cell Biol 91717727 [View Article][PubMed]. [Google Scholar]
  28. Roise D., Schatz G. (1988). Mitochondrial presequencesJ Biol Chem 26345094511[PubMed]. [Google Scholar]
  29. Roise D., Theiler F., Horvath S.J., Tomich J.M., Richards J.H., Allison D.S., Schatz G. (1988). Amphiphilicity is essential for mitochondrial presequence functionEMBO J 7649653[PubMed]. [Google Scholar]
  30. Rucktäschel R., Girzalsky W., Erdmann R. (2011). Protein import machineries of peroxisomesBiochim Biophys Acta 1808892900 [View Article][PubMed]. [Google Scholar]
  31. Schuhmann H., Huesgen P.F., Gietl C., Adamska I. (2008). The DEG15 serine protease cleaves peroxisomal targeting signal 2-containing proteins in Arabidopsis Plant Physiol 14818471856 [View Article][PubMed]. [Google Scholar]
  32. Sussman R., Sussman M. (1967). Cultivation of Dictyostelium discoideum in axenic mediumBiochem Biophys Res Commun 295355 [View Article][PubMed]. [Google Scholar]
  33. Swinkels B.W., Gould S.J., Bodnar A.G., Rachubinski R.A., Subramani S. (1991). A novel, cleavable peroxisomal targeting signal at the amino-terminus of the rat 3-ketoacyl-CoA thiolaseEMBO J 1032553262[PubMed]. [Google Scholar]
  34. Tanaka T., Shima Y., Ogawa N., Nagayama K., Yoshida T., Ohmachi T. (2011). Expression, identification and purification of Dictyostelium acetoacetyl-CoA thiolase expressed in Escherichia coli Int J Biol Sci 7917[PubMed].[CrossRef] [Google Scholar]
  35. Thompson S.L., Krisans S.K. (1990). Rat liver peroxisomes catalyze the initial step in cholesterol synthesis. The condensation of acetyl-CoA units into acetoacetyl-CoAJ Biol Chem 26557315735[PubMed]. [Google Scholar]
  36. Voilley N., Roduit R., Vicaretti R., Bonny C., Waeber G., Dyck J.R.B., Lopaschuk G.D., Prentki M. (1999). Cloning and expression of rat pancreatic β-cell malonyl-CoA decarboxylaseBiochem J 340213217 [View Article][PubMed]. [Google Scholar]
  37. von Heijne G. (1986). Mitochondrial targeting sequences may form amphiphilic helicesEMBO J 513351342[PubMed]. [Google Scholar]
  38. Wimmer B., Lottspeich F., van der Klei I., Veenhuis M., Gietl C. (1997). The glyoxysomal and plastid molecular chaperones (70-kDa heat shock protein) of watermelon cotyledons are encoded by a single geneProc Natl Acad Sci U S A 941362413629 [View Article][PubMed]. [Google Scholar]
  39. Yogev O., Pines O. (2011). Dual targeting of mitochondrial proteins: mechanism, regulation and functionBiochim Biophys Acta 180810121020 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000102
Loading
/content/journal/micro/10.1099/mic.0.000102
Loading

Data & Media loading...

Most cited Most Cited RSS feed