1887

Abstract

The galacto-oligosaccharide (GOS) OLIGOMATE 55N (Yakult) is a mixture of oligosaccharides, the main component of which is 4′-galactosyllactose (4′-GL). Numerous reports have shown that GOSs are non-digestible, reach the colon and selectively stimulate the growth of bifidobacteria. The product has been used as a food ingredient and its applications have expanded rapidly. However, the bifidobacterial glycoside hydrolases and transporters responsible for utilizing GOSs have not been characterized sufficiently. In this study, we aimed to identify and characterize genes responsible for metabolizing 4′-GL in strain Yakult. We attempted to identify Yakult genes induced by 4′-GL using transcriptional profiling during growth in basal medium containing 4′-GL with a custom microarray. We found that BbrY_0420, which encodes solute-binding protein (SBP), and BbrY_0422, which encodes β-galactosidase, were markedly upregulated relative to that during growth in basal medium containing lactose. Investigation of the substrate specificity of recombinant BbrY_0420 protein using surface plasmon resonance showed that BbrY_0420 protein bound to 4′-GL, but not to 3′-GL and 6′-GL, structural isomers of 4′-GL. Additionally, BbrY_0420 had a strong affinity for 4-galactobiose (4-GB), suggesting that this SBP recognized the non-reducing terminal structure of 4′-GL. Incubation of purified recombinant BbrY_0422 protein with 4′-GL, 3′-GL, 6′-GL and 4-GB revealed that the protein efficiently hydrolysed 4′-GL and 4-GB, but did not digest 3′-GL, 6′-GL or lactose, suggesting that BbrY_0422 digested the bond within Gal1,4-β-Gal. Thus, BbrY_0420 (SBP) and BbrY_0422 (β-galactosidase) had identical, strict substrate specificity, suggesting that they were coupled by co-induction to facilitate the transportation and hydrolysis of 4′-GL.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000100
2015-07-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1463.html?itemId=/content/journal/micro/10.1099/mic.0.000100&mimeType=html&fmt=ahah

References

  1. Almeida C.C. , Lorena S.L. , Pavan C.R. , Akasaka H.M. , Mesquita M.A. . ( 2012;). Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patients. Nutr Clin Pract 27: 247–251 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altschul S.F. , Madden T.L. , Schäffer A.A. , Zhang J. , Zhang Z. , Miller W. , Lipman D.J. . ( 1997;). Gapped blast psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  3. Cui J. . Davidson, A. L. ( 2011;). ABC solute importers in bacteria. Essays Biochem 50: 85–99.[CrossRef]
    [Google Scholar]
  4. Ejby M. , Fredslund F. , Vujicic-Zagar A. , Svensson B. , Slotboom D.J. , Abou Hachem M. . ( 2013;). Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04. Mol Microbiol 90: 1100–1112 [CrossRef] [PubMed].
    [Google Scholar]
  5. Fuller R. . ( 1989;). Probiotics in man and animals. J Appl Bacteriol 66: 365–378 [CrossRef] [PubMed].
    [Google Scholar]
  6. Garrido D. , Kim J.H. , German J.B. , Raybould H.E. , Mills D.A. . ( 2011;). Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS One 6: e17315 [CrossRef] [PubMed].
    [Google Scholar]
  7. Gibson G.R. , Roberfroid M.B. . ( 1995;). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125: 1401–1412 [PubMed].
    [Google Scholar]
  8. Ishikawa E. , Shima T. , Suda K. , Shirasawa Y. , Sato T. , Umesaki Y. . ( 2011;). Comparison of Bifidobacterium breve strain Yakult transcriptomes in germ-free mice with those in fecal cultures. J Biosci Bioeng 112: 451–457 [CrossRef] [PubMed].
    [Google Scholar]
  9. Kaneko K. , Watanabe Y. , Kimura K. , Matsumoto K. , Mizobuchi T. , Onoue M. . ( 2014;). Development of hypoallergenic galacto-oligosaccharides on the basis of allergen analysis. Biosci Biotechnol Biochem 78: 100–108 [CrossRef] [PubMed].
    [Google Scholar]
  10. Kano M. , Masuoka N. , Kaga C. , Sugimoto S. , Iizuka R. , Manabe K. , Sone T. , Oeda K. , Nonaka C. , other authors . ( 2013;). Consecutive intake of fermented milk containing Bifidobacterium breve strain Yakult and galacto-oligosaccharides benefits skin condition in healthy adult women. Biosci Microbiota Food Health 32: 33–39 [CrossRef] [PubMed].
    [Google Scholar]
  11. Knol J. , Scholtens P. , Kafka C. , Steenbakkers J. , Gro S. , Helm K. , Klarczyk M. , Schöpfer H. , Böckler H.M. , Wells J. . ( 2005;). Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infants. J Pediatr Gastroenterol Nutr 40: 36–42 [CrossRef] [PubMed].
    [Google Scholar]
  12. Larkin M.A. , Blackshields G. , Brown N.P. , Chenna R. , McGettigan P.A. , McWilliam H. , Valentin F. , Wallace I.M. , Wilm A. , other authors . ( 2007;). Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948 [CrossRef] [PubMed].
    [Google Scholar]
  13. LoCascio R.G. , Desai P. , Sela D.A. , Weimer B. , Mills D.A. . ( 2010;). Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl Environ Microbiol 76: 7373–7381 [CrossRef] [PubMed].
    [Google Scholar]
  14. Maathuis A.J. , van den Heuvel E.G. , Schoterman M.H. , Venema K. . ( 2012;). Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling technique. J Nutr 142: 1205–1212 [CrossRef] [PubMed].
    [Google Scholar]
  15. Matsumoto K. , Takada T. , Yuki N. , Kawakami K. , Sakai T. , Nomoto K. , Kimura K. , Matsumoto K. , Iino H. . ( 2004;). [Effects of transgalactosylated oligosaccharides mixture (N-GOS) on human intestinal microflora]. J Intestinal Microbiol 18: 25–35 (in Japanese).
    [Google Scholar]
  16. Matsuura F. , Imaoka A. . ( 1988;). Chromatographic separation of asparagine-linked oligosaccharides labeled with an ultravioletabsorbing compound, p-aminobenzoic acid ethyl ester. Glycoconj J 5: 13–26 [CrossRef].
    [Google Scholar]
  17. Nelson K.E. , Weinstock G.M. , Highlander S.K. , Worley K.C. , Creasy H.H. , Wortman J.R. , Rusch D.B. , Mitreva M. , Sodergren E. , other authors . ( 2010;). A catalog of reference genomes from the human microbiome. Science 328: 994–999 [CrossRef] [PubMed].
    [Google Scholar]
  18. O'Connell Motherway M. , Fitzgerald G.F. , van Sinderen D. . ( 2011;). Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 4: 403–416 doi:10.1111/j.1751-7915.2010.00218.x [PubMed].[CrossRef]
    [Google Scholar]
  19. Parche S. , Amon J. , Jankovic I. , Rezzonico E. , Beleut M. , Barutçu H. , Schendel I. , Eddy M.P. , Burkovski A. , other authors . ( 2007;). Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12: 9–19 [CrossRef] [PubMed].
    [Google Scholar]
  20. Sangwan V. , Tomar S.K. , Singh R.R. , Singh A.K. , Ali B. . ( 2011;). Galactooligosaccharides: novel components of designer foods. J Food Sci 76: R103–R111 [CrossRef] [PubMed].
    [Google Scholar]
  21. Sharp R. , Fishbain S. , Macfarlane G.T. . ( 2001;). Effect of short-chain carbohydrates on human intestinal bifidobacteria and Escherichia coli in vitro . J Med Microbiol 50: 152–160 [PubMed].
    [Google Scholar]
  22. Sierra C. , Bernal M.J. , Blasco J. , Martinez R. , Dalmau J. , Ortuno I. , Espin B. , Vasallo M.I. , Gil D. , other authors . ( 2015;). Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trial. Eur J Nutr 54: 89–99 [PubMed].[CrossRef]
    [Google Scholar]
  23. Sumiyoshi W. , Urashima T. , Nakamura T. , Arai I. , Nagasawa T. , Saito T. , Tsumura N. , Wang B. , Brand-Miller J. , other authors . ( 2004;). Galactosyllactoses in the milk of Japanese women: changes in concentration during the course of lactation. J Appl Glycosci 51: 341–344 [CrossRef].
    [Google Scholar]
  24. Viborg A.H. , Katayama T. , Abou Hachem M. , Andersen M.C. , Nishimoto M. , Clausen M.H. , Urashima T. , Svensson B. , Kitaoka M. . ( 2014;). Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697. Glycobiology 24: 208–216 [CrossRef] [PubMed].
    [Google Scholar]
  25. Wada J. , Ando T. , Kiyohara M. , Ashida H. , Kitaoka M. , Yamaguchi M. , Kumagai H. , Katayama T. , Yamamoto K. . ( 2008;). Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74: 3996–4004 [CrossRef] [PubMed].
    [Google Scholar]
  26. Walton G.E. , van den Heuvel E.G. , Kosters M.H. , Rastall R.A. , Tuohy K.M. , Gibson G.R. . ( 2012;). A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of age. Br J Nutr 107: 1466–1475 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000100
Loading
/content/journal/micro/10.1099/mic.0.000100
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error