1887

Abstract

The galacto-oligosaccharide (GOS) OLIGOMATE 55N (Yakult) is a mixture of oligosaccharides, the main component of which is 4′-galactosyllactose (4′-GL). Numerous reports have shown that GOSs are non-digestible, reach the colon and selectively stimulate the growth of bifidobacteria. The product has been used as a food ingredient and its applications have expanded rapidly. However, the bifidobacterial glycoside hydrolases and transporters responsible for utilizing GOSs have not been characterized sufficiently. In this study, we aimed to identify and characterize genes responsible for metabolizing 4′-GL in strain Yakult. We attempted to identify Yakult genes induced by 4′-GL using transcriptional profiling during growth in basal medium containing 4′-GL with a custom microarray. We found that BbrY_0420, which encodes solute-binding protein (SBP), and BbrY_0422, which encodes β-galactosidase, were markedly upregulated relative to that during growth in basal medium containing lactose. Investigation of the substrate specificity of recombinant BbrY_0420 protein using surface plasmon resonance showed that BbrY_0420 protein bound to 4′-GL, but not to 3′-GL and 6′-GL, structural isomers of 4′-GL. Additionally, BbrY_0420 had a strong affinity for 4-galactobiose (4-GB), suggesting that this SBP recognized the non-reducing terminal structure of 4′-GL. Incubation of purified recombinant BbrY_0422 protein with 4′-GL, 3′-GL, 6′-GL and 4-GB revealed that the protein efficiently hydrolysed 4′-GL and 4-GB, but did not digest 3′-GL, 6′-GL or lactose, suggesting that BbrY_0422 digested the bond within Gal1,4-β-Gal. Thus, BbrY_0420 (SBP) and BbrY_0422 (β-galactosidase) had identical, strict substrate specificity, suggesting that they were coupled by co-induction to facilitate the transportation and hydrolysis of 4′-GL.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000100
2015-07-01
2021-07-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1463.html?itemId=/content/journal/micro/10.1099/mic.0.000100&mimeType=html&fmt=ahah

References

  1. Almeida C.C., Lorena S.L., Pavan C.R., Akasaka H.M., Mesquita M.A. (2012). Beneficial effects of long-term consumption of a probiotic combination of Lactobacillus casei Shirota and Bifidobacterium breve Yakult may persist after suspension of therapy in lactose-intolerant patientsNutr Clin Pract 27247251 [View Article][PubMed]. [Google Scholar]
  2. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997). Gapped blast psi-blast: a new generation of protein database search programsNucleic Acids Res 2533893402 [View Article][PubMed]. [Google Scholar]
  3. Cui J. Davidson, A. L. (2011). ABC solute importers in bacteriaEssays Biochem 508599.[CrossRef] [Google Scholar]
  4. Ejby M., Fredslund F., Vujicic-Zagar A., Svensson B., Slotboom D.J., Abou Hachem M. (2013). Structural basis for arabinoxylo-oligosaccharide capture by the probiotic Bifidobacterium animalis subsp. lactis Bl-04Mol Microbiol 9011001112 [View Article][PubMed]. [Google Scholar]
  5. Fuller R. (1989). Probiotics in man and animalsJ Appl Bacteriol 66365378 [View Article][PubMed]. [Google Scholar]
  6. Garrido D., Kim J.H., German J.B., Raybould H.E., Mills D.A. (2011). Oligosaccharide binding proteins from Bifidobacterium longum subsp infantis reveal a preference for host glycans. PLoS One 6e17315 [View Article][PubMed]. [Google Scholar]
  7. Gibson G.R., Roberfroid M.B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebioticsJ Nutr 12514011412[PubMed]. [Google Scholar]
  8. Ishikawa E., Shima T., Suda K., Shirasawa Y., Sato T., Umesaki Y. (2011). Comparison of Bifidobacterium breve strain Yakult transcriptomes in germ-free mice with those in fecal culturesJ Biosci Bioeng 112451457 [View Article][PubMed]. [Google Scholar]
  9. Kaneko K., Watanabe Y., Kimura K., Matsumoto K., Mizobuchi T., Onoue M. (2014). Development of hypoallergenic galacto-oligosaccharides on the basis of allergen analysisBiosci Biotechnol Biochem 78100108 [View Article][PubMed]. [Google Scholar]
  10. Kano M., Masuoka N., Kaga C., Sugimoto S., Iizuka R., Manabe K., Sone T., Oeda K., Nonaka C., other authors. (2013). Consecutive intake of fermented milk containing Bifidobacterium breve strain Yakult and galacto-oligosaccharides benefits skin condition in healthy adult womenBiosci Microbiota Food Health 323339 [View Article][PubMed]. [Google Scholar]
  11. Knol J., Scholtens P., Kafka C., Steenbakkers J., Gro S., Helm K., Klarczyk M., Schöpfer H., Böckler H.M., Wells J. (2005). Colon microflora in infants fed formula with galacto- and fructo-oligosaccharides: more like breast-fed infantsJ Pediatr Gastroenterol Nutr 403642 [View Article][PubMed]. [Google Scholar]
  12. Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., other authors. (2007). Clustal W and Clustal X version 2.0Bioinformatics 2329472948 [View Article][PubMed]. [Google Scholar]
  13. LoCascio R.G., Desai P., Sela D.A., Weimer B., Mills D.A. (2010). Broad conservation of milk utilization genes in Bifidobacterium longum subspinfantis as revealed by comparative genomic hybridization. Appl Environ Microbiol 7673737381 [View Article][PubMed]. [Google Scholar]
  14. Maathuis A.J., van den Heuvel E.G., Schoterman M.H., Venema K. (2012). Galacto-oligosaccharides have prebiotic activity in a dynamic in vitro colon model using a 13C-labeling techniqueJ Nutr 14212051212 [View Article][PubMed]. [Google Scholar]
  15. Matsumoto K., Takada T., Yuki N., Kawakami K., Sakai T., Nomoto K., Kimura K., Matsumoto K., Iino H. (2004). [Effects of transgalactosylated oligosaccharides mixture (N-GOS) on human intestinal microflora]J Intestinal Microbiol 182535(in Japanese). [Google Scholar]
  16. Matsuura F., Imaoka A. (1988). Chromatographic separation of asparagine-linked oligosaccharides labeled with an ultravioletabsorbing compound, p-aminobenzoic acid ethyl esterGlycoconj J 51326 [View Article]. [Google Scholar]
  17. Nelson K.E., Weinstock G.M., Highlander S.K., Worley K.C., Creasy H.H., Wortman J.R., Rusch D.B., Mitreva M., Sodergren E., other authors. (2010). A catalog of reference genomes from the human microbiomeScience 328994999 [View Article][PubMed]. [Google Scholar]
  18. O'Connell Motherway M., Fitzgerald G.F., van Sinderen D. (2011). Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003Microb Biotechnol 4403416doi:10.1111/j.1751-7915.2010.00218.x[PubMed] .[CrossRef] [Google Scholar]
  19. Parche S., Amon J., Jankovic I., Rezzonico E., Beleut M., Barutçu H., Schendel I., Eddy M.P., Burkovski A., other authors. (2007). Sugar transport systems of Bifidobacterium longum NCC2705J Mol Microbiol Biotechnol 12919 [View Article][PubMed]. [Google Scholar]
  20. Sangwan V., Tomar S.K., Singh R.R., Singh A.K., Ali B. (2011). Galactooligosaccharides: novel components of designer foodsJ Food Sci 76R103R111 [View Article][PubMed]. [Google Scholar]
  21. Sharp R., Fishbain S., Macfarlane G.T. (2001). Effect of short-chain carbohydrates on human intestinal bifidobacteria and Escherichia coli in vitro J Med Microbiol 50152160[PubMed]. [Google Scholar]
  22. Sierra C., Bernal M.J., Blasco J., Martinez R., Dalmau J., Ortuno I., Espin B., Vasallo M.I., Gil D., other authors. (2015). Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trialEur J Nutr 548999[PubMed].[CrossRef] [Google Scholar]
  23. Sumiyoshi W., Urashima T., Nakamura T., Arai I., Nagasawa T., Saito T., Tsumura N., Wang B., Brand-Miller J., other authors. (2004). Galactosyllactoses in the milk of Japanese women: changes in concentration during the course of lactationJ Appl Glycosci 51341344 [View Article]. [Google Scholar]
  24. Viborg A.H., Katayama T., Abou Hachem M., Andersen M.C., Nishimoto M., Clausen M.H., Urashima T., Svensson B., Kitaoka M. (2014). Distinct substrate specificities of three glycoside hydrolase family 42 β-galactosidases from Bifidobacterium longum subsp. infantis ATCC 15697Glycobiology 24208216 [View Article][PubMed]. [Google Scholar]
  25. Wada J., Ando T., Kiyohara M., Ashida H., Kitaoka M., Yamaguchi M., Kumagai H., Katayama T., Yamamoto K. (2008). Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structureAppl Environ Microbiol 7439964004 [View Article][PubMed]. [Google Scholar]
  26. Walton G.E., van den Heuvel E.G., Kosters M.H., Rastall R.A., Tuohy K.M., Gibson G.R. (2012). A randomised crossover study investigating the effects of galacto-oligosaccharides on the faecal microbiota in men and women over 50 years of ageBr J Nutr 10714661475 [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000100
Loading
/content/journal/micro/10.1099/mic.0.000100
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error