1887

Abstract

is a mycoparasitic fungal species that is an efficient biocontrol agent against many plant diseases. During mycoparasitic interactions, one of the most crucial steps is the hydrolysis of the prey's fungal cell wall, which mainly consists of glucans, glycoproteins and chitin. Chitinases are hydrolytic enzymes responsible for chitin degradation and it is suggested that they play an important role in fungal–fungal interactions. Fungal chitinases belong exclusively to the glycoside hydrolase (GH) family 18.These GH18 proteins are categorized into three distinct phylogenetic groups (A, B and C), subdivided into several subgroups. In this study, we identified 14 GH18 genes in the genome, which is remarkably low compared with the high numbers found in mycoparasitic species. Phylogenetic analysis revealed that contains eight genes in group A, two genes in group B, two genes in group C, one gene encoding a putative ENGase (endo-β--acetylglucosaminidase) and the gene, which is of bacterial origin. Gene expression analysis showed that only two genes had higher transcription levels during fungal–fungal interactions, while eight out of 14 GH18 genes were triggered by chitin. Furthermore, deletion of the C group gene decreased the growth inhibitory activity of culture filtrates against and , although the biocontrol ability of against was not affected. In addition, a potential role of the CHIC2 chitinase in the sporulation process was revealed. These results provide new information about the role of GH18 proteins in mycoparasitic interactions.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000096
2015-07-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1407.html?itemId=/content/journal/micro/10.1099/mic.0.000096&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J.. ( 1997;). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25: 3389–3402 [CrossRef] [PubMed].
    [Google Scholar]
  2. Bartnicki-Garcia S.. ( 1968;). Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22: 87–108 [CrossRef] [PubMed].
    [Google Scholar]
  3. Bowman S.M., Free S.J.. ( 2006;). The structure and synthesis of the fungal cell wall. BioEssays 28: 799–808 [CrossRef] [PubMed].
    [Google Scholar]
  4. Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B.. ( 2009;). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37: D233–D238 [CrossRef] [PubMed].
    [Google Scholar]
  5. Carsolio C., Gutiérrez A., Jiménez B., Van Montagu M., Herrera-Estrella A.. ( 1994;). Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci U S A 91: 10903–10907 [CrossRef] [PubMed].
    [Google Scholar]
  6. Carsolio C., Benhamou N., Haran S., Cortés C., Gutiérrez A., Chet I., Herrera-Estrella A.. ( 1999;). Role of the Trichoderma harzianum endochitinase gene ech42, in mycoparasitism. Appl Environ Microbiol 65: 929–935Medline.
    [Google Scholar]
  7. De las Mercedes Dana M., Limón M.C., Mejías R., Mach R.L., Benítez T., Pintor-Toro J.A., Kubicek C.P.. ( 2001;). Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr Genet 38: 335–342 [CrossRef] [PubMed].
    [Google Scholar]
  8. de Nobel H., van Den Ende H., Klis F.M.. ( 2000;). Cell wall maintenance in fungi. Trends Microbiol 8: 344–345 [CrossRef] [PubMed].
    [Google Scholar]
  9. Dubey M.K., Ubhayasekera W., Sandgren M., Jensen D.F., Karlsson M.. ( 2012;). Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability. PLoS One 7: e36152 [CrossRef] [PubMed].
    [Google Scholar]
  10. Dubey M.K., Broberg A., Sooriyaarachchi S., Ubhayasekera W., Jensen D.F., Karlsson M.. ( 2013;). The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride. Fungal Genet Biol 58-59: 33–41 [CrossRef] [PubMed].
    [Google Scholar]
  11. Dubey M.K., Jensen D.F., Karlsson M.. ( 2014a;). Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea. BMC Microbiol 14: 18 [CrossRef] [PubMed].
    [Google Scholar]
  12. Dubey M.K., Jensen D.F., Karlsson M.. ( 2014b;). An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea. Mol Plant Microbe Interact 27: 725–732 [CrossRef] [PubMed].
    [Google Scholar]
  13. Eisenhaber B., Schneider G., Wildpaner M., Eisenhaber F.. ( 2004;). A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans Candida albicans Neurospora crassa Saccharomyces cerevisiae Schizosaccharomyces pombe. J Mol Biol 337: 243–253 [CrossRef] [PubMed].
    [Google Scholar]
  14. Emanuelsson O., Nielsen H., Brunak S., von Heijne G.. ( 2000;). Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300: 1005–1016 [CrossRef] [PubMed].
    [Google Scholar]
  15. Gan Z., Yang J., Tao N., Yu Z., Zhang K.Q.. ( 2007;). Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn Gliocladium roseum). J Microbiol 45: 422–430Medline.
    [Google Scholar]
  16. Giaever G., Chu A.M., Ni L., Connelly C., Riles L., Véronneau S., Dow S., Lucau-Danila A., Anderson K..other authors ( 2002;). Functional profiling of the Saccharomyces cerevisiae genome. Nature 418: 387–391 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gooday G.W.. ( 1990;). Physiology of microbial degradation of chitin and chitosan. Biodegradation 1: 177–190 [CrossRef].
    [Google Scholar]
  18. Gruber S., Seidl-Seiboth V.. ( 2012;). Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiology 158: 26–34 [CrossRef] [PubMed].
    [Google Scholar]
  19. Gruber S., Kubicek C.P., Seidl-Seiboth V.. ( 2011a;). Differential regulation of orthologous chitinase genes in mycoparasitic Trichoderma species. Appl Environ Microbiol 77: 7217–7226 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C.P., Seidl-Seiboth V.. ( 2011b;). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. Glycobiology 21: 122–133 [CrossRef] [PubMed].
    [Google Scholar]
  21. Horn S.J., Sørbotten A., Synstad B., Sikorski P., Sørlie M., Vårum K.M., Eijsink V.G.H.. ( 2006;). Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J 273: 491–503 [CrossRef] [PubMed].
    [Google Scholar]
  22. Ihrmark K., Asmail N., Ubhayasekera W., Melin P., Stenlid J., Karlsson M.. ( 2010;). Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactions. Evol Bioinform Online 6: 1–26Medline.
    [Google Scholar]
  23. Inglis G.D., Kawchuk L.M.. ( 2002;). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48: 60–70 [CrossRef] [PubMed].
    [Google Scholar]
  24. Jeffries P.. ( 1995;). Biology and ecology of mycoparasitism. Can J Bot 73: (S1), 1284–1290 [CrossRef].
    [Google Scholar]
  25. Jensen B., Knudsen I.M.B., Funck Jensen D.. ( 2000;). Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: Biocontrol efficacy against Fusarium culmorum. Eur J Plant Pathol 106: 233–242 [CrossRef].
    [Google Scholar]
  26. Jensen B., Knudsen I.M.B., Madsen M., Jensen D.F.. ( 2004;). Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria spp. Phytopathology 94: 551–560 [CrossRef] [PubMed].
    [Google Scholar]
  27. Jones D.T., Taylor W.R., Thornton J.M.. ( 1992;). The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8: 275–282Medline.
    [Google Scholar]
  28. Karimi M., De Meyer B., Hilson P.. ( 2005;). Modular cloning in plant cells. Trends Plant Sci 10: 103–105 [CrossRef] [PubMed].
    [Google Scholar]
  29. Karlsson M., Stenlid J.. ( 2008;). Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinform Online 4: 47–60Medline.
    [Google Scholar]
  30. Karlsson M., Stenlid J.. ( 2009;). Evolution of family 18 glycoside hydrolases: diversity, domain structures and phylogenetic relationships. J Mol Microbiol Biotechnol 16: 208–223 [CrossRef] [PubMed].
    [Google Scholar]
  31. Karlsson M., Stenlid J., Olson Å.. ( 2005;). Identification of a superoxide dismutase gene from the conifer pathogen Heterobasidion annosum. Physiol Mol Plant Pathol 66: 99–107 [CrossRef].
    [Google Scholar]
  32. Karlsson M., Durling M.B., Choi J., Kosawang C., Lackner G., Tzelepis G.D., Nygren K., Dubey M.K., Kamou N..other authors ( 2015;). Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea. Genome Biol Evol 7: 465–480 [CrossRef] [PubMed].
    [Google Scholar]
  33. Knudsen I.M.B., Hockenhull J., Funck Jensen D., Gerhardson B., Hökeberg M., Tahvonen R., Teperi E., Sundheim L., Henriksen B.. ( 1997;). Selection of biological control agents for controlling soil and seed-borne diseases in the field. Eur J Plant Pathol 103: 775–784 [CrossRef].
    [Google Scholar]
  34. Krogh A., Larsson B., von Heijne G., Sonnhammer E.L.. ( 2001;). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567–580 [CrossRef] [PubMed].
    [Google Scholar]
  35. Letunic I., Doerks T., Bork P.. ( 2009;). smart 6: recent updates and new developments. Nucleic Acids Res 37: D229–D232 [CrossRef] [PubMed].
    [Google Scholar]
  36. Lorang J.M., Tuori R.P., Martinez J.P., Sawyer T.L., Redman R.S., Rollins J.A., Wolpert T.J., Johnson K.B., Rodriguez R.J..other authors ( 2001; Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67: 1987–1994 [CrossRef] [PubMed].
    [Google Scholar]
  37. Lübeck M., Knudsen I.M.B., Jensen B., Thrane U., Janvier C., Funck Jensen D.. ( 2002;). GUS and GFP transformation of the biocontrol strain Clonostachys rosea IK726 and the use of these marker genes in ecological studies. Mycol Res 106: 815–826 [CrossRef].
    [Google Scholar]
  38. Luongo L., Galli M., Corazza L., Meekes E.T.M., Haas B.H., Lombaers–Van der Plas C.H., Köhl J.. ( 2005;). Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debris. Biocontrol Sci Technol 15: 229–242 [CrossRef].
    [Google Scholar]
  39. Mach R.L., Peterbauer C.K., Payer K., Jaksits S., Woo S.L., Zeilinger S., Kullnig C.M., Lorito M., Kubicek C.P.. ( 1999;). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65: 1858–1863Medline.
    [Google Scholar]
  40. Magliani W., Conti S., Gerloni M., Bertolotti D., Polonelli L.. ( 1997;). Yeast killer systems. Clin Microbiol Rev 10: 369–400Medline.
    [Google Scholar]
  41. Mamarabadi M., Jensen B., Lübeck M.. ( 2008a;). Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressed. Curr Genet 54: 57–70 [CrossRef] [PubMed].
    [Google Scholar]
  42. Mamarabadi M., Jensen B., Jensen D.F., Lübeck M.. ( 2008b;). Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberry. FEMS Microbiol Lett 285: 101–110 [CrossRef] [PubMed].
    [Google Scholar]
  43. Martinez D., Berka R.M., Henrissat B., Saloheimo M., Arvas M., Baker S.E., Chapman J., Chertkov O., Coutinho P.M..other authors ( 2008;). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina). Nat Biotechnol 26: 553–560 [CrossRef] [PubMed].
    [Google Scholar]
  44. Møller K., Jensen B., Paludan Andersen H., Stryhnz H., Hockenhull J.. ( 2003;). Biocontrol of Pythium tracheiphilum in chinese cabbage by Clonostachys rosea under field conditions. Biocontrol Sci Technol 13: 171–182 [CrossRef].
    [Google Scholar]
  45. Nakai K., Horton P.. ( 1999;). psort: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24: 34–35 [CrossRef] [PubMed].
    [Google Scholar]
  46. Nygren C.M.R., Eberhardt U., Karlsson M., Parrent J.L., Lindahl B.D., Taylor A.F.S.. ( 2008;). Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol 180: 875–889 [CrossRef] [PubMed].
    [Google Scholar]
  47. Petersen T.N., Brunak S., von Heijne G., Nielsen H.. ( 2011;). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8: 785–786 [CrossRef] [PubMed].
    [Google Scholar]
  48. Pfaffl M.W.. ( 2001;). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45 [CrossRef] [PubMed].
    [Google Scholar]
  49. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R.. ( 2005;). InterProScan: protein domains identifier. Nucleic Acids Res 33: W116–W120 [CrossRef] [PubMed].
    [Google Scholar]
  50. Sándor E., Pusztahelyi T., Karaffa L., Karányi Z., Pócsi I., Biró S., Szentirmai A., Pócsi I.. ( 1998;). Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungus. FEMS Microbiol Lett 164: 231–236 [CrossRef] [PubMed].
    [Google Scholar]
  51. Seidl V.. ( 2008;). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22: 36–42 [CrossRef].
    [Google Scholar]
  52. Seidl V., Huemer B., Seiboth B., Kubicek C.P.. ( 2005;). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272: 5923–5939 [CrossRef] [PubMed].
    [Google Scholar]
  53. Seidl-Seiboth V., Ihrmark K., Druzhinina I.S., Karlsson M.. ( 2014;). Molecular evolution of Trichoderma chitinases. [CrossRef] In Biotechnology and Biology of Trichoderma, pp. 67–78. Edited by Gupta V., Schmoll M., Herrera-Estrella A., Druzhinina I. S., Upadhyay R., Tuohy M.. Amsterdam: Elsevier;.
    [Google Scholar]
  54. Specht C.A., Liu Y., Robbins P.W., Bulawa C.E., Iartchouk N., Winter K.R., Riggle P.J., Rhodes J.C., Dodge C.L..other authors ( 1996;). The chsD chsE genes of Aspergillus nidulans and their roles in chitin synthesis. Fungal Genet Biol 20: 153–167 [CrossRef] [PubMed].
    [Google Scholar]
  55. Stals I., Samyn B., Sergeant K., White T., Hoorelbeke K., Coorevits A., Devreese B., Claeyssens M., Piens K.. ( 2010;). Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina. FEMS Microbiol Lett 303: 9–17 [CrossRef] [PubMed].
    [Google Scholar]
  56. Stark M.J.R., Boyd A.. ( 1986;). The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode them. EMBO J 5: 1995–2002Medline.
    [Google Scholar]
  57. Sutton J.C., Li D.W., Peng G., Yu H., Zhang P.G., Valdebenito-Sanhueza R.M.. ( 1997;). Gliocladium roseum; a versatile adversary of Botrytis cinerea in crops. Plant Disease 81: 316–328 [CrossRef].
    [Google Scholar]
  58. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S.. ( 2013;). mega6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30: 2725–2729 [CrossRef] [PubMed].
    [Google Scholar]
  59. Thompson J.D., Higgins D.G., Gibson T.J.. ( 1994;). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673–4680 [CrossRef] [PubMed].
    [Google Scholar]
  60. Tzelepis G.D., Melin P., Jensen D.F., Stenlid J., Karlsson M.. ( 2012;). Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa. Fungal Genet Biol 49: 717–730 [CrossRef] [PubMed].
    [Google Scholar]
  61. Tzelepis G.D., Melin P., Stenlid J., Jensen D.F., Karlsson M.. ( 2014;). Functional analysis of the C-II subgroup killer toxin-like chitinases in the filamentous ascomycete Aspergillus nidulans. Fungal Genet Biol 64: 58–66 [CrossRef] [PubMed].
    [Google Scholar]
  62. Ubhayasekera W., Karlsson M.. ( 2012;). Bacterial and fungal chitinase chiJ orthologs evolve under different selective constraints following horizontal gene transfer. BMC Res Notes 5: 581 [CrossRef] [PubMed].
    [Google Scholar]
  63. Utermark J.K., Karlovsky P.. ( 2008;). Genetic transformation of filamentous fungi by Agrobacterium tumefaciens Protocol Exchange. http://www.nature.com/protocolexchange/protocols/427..
  64. van Munster J.M., van der Kaaij R.M., Dijkhuizen L., van der Maarel M.J.. ( 2012;). Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology 158: 2168–2179 [CrossRef] [PubMed].
    [Google Scholar]
  65. Woo S.L., Donzelli B., Scala F., Mach R., Harman G.E., Kubicek C.P., DelSorbo G., Lorito M.. ( 1999;). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant Microbe Interact 12: 419–429 [CrossRef].
    [Google Scholar]
  66. Yamazaki H., Tanaka A., Kaneko J., Ohta A., Horiuchi H.. ( 2008;). Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sites. Fungal Genet Biol 45: 963–972 [CrossRef] [PubMed].
    [Google Scholar]
  67. Zapparata A. ( 2014;). Gene expression analysis of ABC- and MFS-transporters in the fungal biocontrol agent Clonostachys rosea. MSc thesis, Pisa University, Pisa, Italy.
  68. Zeilinger S., Galhaup C., Payer K., Woo S.L., Mach R.L., Fekete C., Lorito M., Kubicek C.P.. ( 1999;). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26: 131–140 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000096
Loading
/content/journal/micro/10.1099/mic.0.000096
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error