is a mycoparasitic fungal species that is an efficient biocontrol agent against many plant diseases. During mycoparasitic interactions, one of the most crucial steps is the hydrolysis of the prey's fungal cell wall, which mainly consists of glucans, glycoproteins and chitin. Chitinases are hydrolytic enzymes responsible for chitin degradation and it is suggested that they play an important role in fungal–fungal interactions. Fungal chitinases belong exclusively to the glycoside hydrolase (GH) family 18.These GH18 proteins are categorized into three distinct phylogenetic groups (A, B and C), subdivided into several subgroups. In this study, we identified 14 GH18 genes in the genome, which is remarkably low compared with the high numbers found in mycoparasitic species. Phylogenetic analysis revealed that contains eight genes in group A, two genes in group B, two genes in group C, one gene encoding a putative ENGase (endo-β--acetylglucosaminidase) and the gene, which is of bacterial origin. Gene expression analysis showed that only two genes had higher transcription levels during fungal–fungal interactions, while eight out of 14 GH18 genes were triggered by chitin. Furthermore, deletion of the C group gene decreased the growth inhibitory activity of culture filtrates against and , although the biocontrol ability of against was not affected. In addition, a potential role of the CHIC2 chitinase in the sporulation process was revealed. These results provide new information about the role of GH18 proteins in mycoparasitic interactions.


Article metrics loading...

Loading full text...

Full text loading...



  1. Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. (1997). Gapped blast and psi-blast: a new generation of protein database search programsNucleic Acids Res 2533893402 [View Article][PubMed]. [Google Scholar]
  2. Bartnicki-Garcia S. (1968). Cell wall chemistry, morphogenesis, and taxonomy of fungiAnnu Rev Microbiol 2287108 [View Article][PubMed]. [Google Scholar]
  3. Bowman S.M., Free S.J. (2006). The structure and synthesis of the fungal cell wallBioEssays 28799808 [View Article][PubMed]. [Google Scholar]
  4. Cantarel B.L., Coutinho P.M., Rancurel C., Bernard T., Lombard V., Henrissat B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomicsNucleic Acids Res 37D233D238 [View Article][PubMed]. [Google Scholar]
  5. Carsolio C., Gutiérrez A., Jiménez B., Van Montagu M., Herrera-Estrella A. (1994). Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitismProc Natl Acad Sci U S A 911090310907 [View Article][PubMed]. [Google Scholar]
  6. Carsolio C., Benhamou N., Haran S., Cortés C., Gutiérrez A., Chet I., Herrera-Estrella A. (1999). Role of the Trichoderma harzianum endochitinase gene ech42, in mycoparasitismAppl Environ Microbiol 65929935 Medline. [Google Scholar]
  7. De las Mercedes Dana M., Limón M.C., Mejías R., Mach R.L., Benítez T., Pintor-Toro J.A., Kubicek C.P. (2001). Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum Curr Genet 38335342 [View Article][PubMed]. [Google Scholar]
  8. de Nobel H., van Den Ende H., Klis F.M. (2000). Cell wall maintenance in fungiTrends Microbiol 8344345 [View Article][PubMed]. [Google Scholar]
  9. Dubey M.K., Ubhayasekera W., Sandgren M., Jensen D.F., Karlsson M. (2012). Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic abilityPLoS One 7e36152 [View Article][PubMed]. [Google Scholar]
  10. Dubey M.K., Broberg A., Sooriyaarachchi S., Ubhayasekera W., Jensen D.F., Karlsson M. (2013). The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride Fungal Genet Biol 58-593341 [View Article][PubMed]. [Google Scholar]
  11. Dubey M.K., Jensen D.F., Karlsson M. (2014a). Hydrophobins are required for conidial hydrophobicity and plant root colonization in the fungal biocontrol agent Clonostachys rosea BMC Microbiol 1418 [View Article][PubMed]. [Google Scholar]
  12. Dubey M.K., Jensen D.F., Karlsson M. (2014b). An ATP-binding cassette pleiotropic drug transporter protein is required for xenobiotic tolerance and antagonism in the fungal biocontrol agent Clonostachys rosea Mol Plant Microbe Interact 27725732 [View Article][PubMed]. [Google Scholar]
  13. Eisenhaber B., Schneider G., Wildpaner M., Eisenhaber F. (2004). A sensitive predictor for potential GPI lipid modification sites in fungal protein sequences and its application to genome-wide studies for Aspergillus nidulans Candida albicans Neurospora crassa Saccharomyces cerevisiae Schizosaccharomyces pombe J Mol Biol 337243253 [View Article][PubMed]. [Google Scholar]
  14. Emanuelsson O., Nielsen H., Brunak S., von Heijne G. (2000). Predicting subcellular localization of proteins based on their N-terminal amino acid sequenceJ Mol Biol 30010051016 [View Article][PubMed]. [Google Scholar]
  15. Gan Z., Yang J., Tao N., Yu Z., Zhang K.Q. (2007). Cloning and expression analysis of a chitinase gene Crchi1 from the mycoparasitic fungus Clonostachys rosea (syn Gliocladium roseum)J Microbiol 45422430 Medline. [Google Scholar]
  16. Giaever G., Chu A.M., Ni L., Connelly C., Riles L., Véronneau S., Dow S., Lucau-Danila A., Anderson K.other authors (2002). Functional profiling of the Saccharomyces cerevisiae genomeNature 418387391 [View Article][PubMed]. [Google Scholar]
  17. Gooday G.W. (1990). Physiology of microbial degradation of chitin and chitosanBiodegradation 1177190 [View Article]. [Google Scholar]
  18. Gruber S., Seidl-Seiboth V. (2012). Self versus non-self: fungal cell wall degradation in Trichoderma Microbiology 1582634 [View Article][PubMed]. [Google Scholar]
  19. Gruber S., Kubicek C.P., Seidl-Seiboth V. (2011a). Differential regulation of orthologous chitinase genes in mycoparasitic Trichoderma speciesAppl Environ Microbiol 7772177226 [View Article][PubMed]. [Google Scholar]
  20. Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C.P., Seidl-Seiboth V. (2011b). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride Glycobiology 21122133 [View Article][PubMed]. [Google Scholar]
  21. Horn S.J., Sørbotten A., Synstad B., Sikorski P., Sørlie M., Vårum K.M., Eijsink V.G.H. (2006). Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens FEBS J 273491503 [View Article][PubMed]. [Google Scholar]
  22. Ihrmark K., Asmail N., Ubhayasekera W., Melin P., Stenlid J., Karlsson M. (2010). Comparative molecular evolution of Trichoderma chitinases in response to mycoparasitic interactionsEvol Bioinform Online 6126 Medline. [Google Scholar]
  23. Inglis G.D., Kawchuk L.M. (2002). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungiCan J Microbiol 486070 [View Article][PubMed]. [Google Scholar]
  24. Jeffries P. (1995). Biology and ecology of mycoparasitismCan J Bot 73(S1), 12841290 [View Article]. [Google Scholar]
  25. Jensen B., Knudsen I.M.B., Funck Jensen D. (2000). Biological seed treatment of cereals with fresh and long-term stored formulations of Clonostachys rosea: Biocontrol efficacy against Fusarium culmorum Eur J Plant Pathol 106233242 [View Article]. [Google Scholar]
  26. Jensen B., Knudsen I.M.B., Madsen M., Jensen D.F. (2004). Biopriming of infected carrot seed with an antagonist, Clonostachys rosea, selected for control of seedborne Alternaria sppPhytopathology 94551560 [View Article][PubMed]. [Google Scholar]
  27. Jones D.T., Taylor W.R., Thornton J.M. (1992). The rapid generation of mutation data matrices from protein sequencesComput Appl Biosci 8275282 Medline. [Google Scholar]
  28. Karimi M., De Meyer B., Hilson P. (2005). Modular cloning in plant cellsTrends Plant Sci 10103105 [View Article][PubMed]. [Google Scholar]
  29. Karlsson M., Stenlid J. (2008). Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selectionEvol Bioinform Online 44760 Medline. [Google Scholar]
  30. Karlsson M., Stenlid J. (2009). Evolution of family 18 glycoside hydrolases: diversity, domain structures and phylogenetic relationshipsJ Mol Microbiol Biotechnol 16208223 [View Article][PubMed]. [Google Scholar]
  31. Karlsson M., Stenlid J., Olson Å. (2005). Identification of a superoxide dismutase gene from the conifer pathogen Heterobasidion annosum Physiol Mol Plant Pathol 6699107 [View Article]. [Google Scholar]
  32. Karlsson M., Durling M.B., Choi J., Kosawang C., Lackner G., Tzelepis G.D., Nygren K., Dubey M.K., Kamou N.other authors (2015). Insights on the evolution of mycoparasitism from the genome of Clonostachys rosea Genome Biol Evol 7465480 [View Article][PubMed]. [Google Scholar]
  33. Knudsen I.M.B., Hockenhull J., Funck Jensen D., Gerhardson B., Hökeberg M., Tahvonen R., Teperi E., Sundheim L., Henriksen B. (1997). Selection of biological control agents for controlling soil and seed-borne diseases in the fieldEur J Plant Pathol 103775784 [View Article]. [Google Scholar]
  34. Krogh A., Larsson B., von Heijne G., Sonnhammer E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomesJ Mol Biol 305567580 [View Article][PubMed]. [Google Scholar]
  35. Letunic I., Doerks T., Bork P. (2009). smart 6: recent updates and new developmentsNucleic Acids Res 37D229D232 [View Article][PubMed]. [Google Scholar]
  36. Lorang J.M., Tuori R.P., Martinez J.P., Sawyer T.L., Redman R.S., Rollins J.A., Wolpert T.J., Johnson K.B., Rodriguez R.J.other authors (2001 Green fluorescent protein is lighting up fungal biologyAppl Environ Microbiol 6719871994 [View Article][PubMed]. [Google Scholar]
  37. Lübeck M., Knudsen I.M.B., Jensen B., Thrane U., Janvier C., Funck Jensen D. (2002). GUS and GFP transformation of the biocontrol strain Clonostachys rosea IK726 and the use of these marker genes in ecological studiesMycol Res 106815826 [View Article]. [Google Scholar]
  38. Luongo L., Galli M., Corazza L., Meekes E.T.M., Haas B.H., Lombaers–Van der Plas C.H., Köhl J. (2005). Potential of fungal antagonists for biocontrol of Fusarium spp. in wheat and maize through competition in crop debrisBiocontrol Sci Technol 15229242 [View Article]. [Google Scholar]
  39. Mach R.L., Peterbauer C.K., Payer K., Jaksits S., Woo S.L., Zeilinger S., Kullnig C.M., Lorito M., Kubicek C.P. (1999). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signalsAppl Environ Microbiol 6518581863 Medline. [Google Scholar]
  40. Magliani W., Conti S., Gerloni M., Bertolotti D., Polonelli L. (1997). Yeast killer systemsClin Microbiol Rev 10369400 Medline. [Google Scholar]
  41. Mamarabadi M., Jensen B., Lübeck M. (2008a). Three endochitinase-encoding genes identified in the biocontrol fungus Clonostachys rosea are differentially expressedCurr Genet 545770 [View Article][PubMed]. [Google Scholar]
  42. Mamarabadi M., Jensen B., Jensen D.F., Lübeck M. (2008b). Real-time RT-PCR expression analysis of chitinase and endoglucanase genes in the three-way interaction between the biocontrol strain Clonostachys rosea IK726, Botrytis cinerea and strawberryFEMS Microbiol Lett 285101110 [View Article][PubMed]. [Google Scholar]
  43. Martinez D., Berka R.M., Henrissat B., Saloheimo M., Arvas M., Baker S.E., Chapman J., Chertkov O., Coutinho P.M.other authors (2008). Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn Hypocrea jecorina)Nat Biotechnol 26553560 [View Article][PubMed]. [Google Scholar]
  44. Møller K., Jensen B., Paludan Andersen H., Stryhnz H., Hockenhull J. (2003). Biocontrol of Pythium tracheiphilum in chinese cabbage by Clonostachys rosea under field conditionsBiocontrol Sci Technol 13171182 [View Article]. [Google Scholar]
  45. Nakai K., Horton P. (1999). psort: a program for detecting sorting signals in proteins and predicting their subcellular localizationTrends Biochem Sci 243435 [View Article][PubMed]. [Google Scholar]
  46. Nygren C.M.R., Eberhardt U., Karlsson M., Parrent J.L., Lindahl B.D., Taylor A.F.S. (2008). Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungiNew Phytol 180875889 [View Article][PubMed]. [Google Scholar]
  47. Petersen T.N., Brunak S., von Heijne G., Nielsen H. (2011). SignalP 4.0: discriminating signal peptides from transmembrane regionsNat Methods 8785786 [View Article][PubMed]. [Google Scholar]
  48. Pfaffl M.W. (2001). A new mathematical model for relative quantification in real-time RT-PCRNucleic Acids Res 29e45 [View Article][PubMed]. [Google Scholar]
  49. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R. (2005). InterProScan: protein domains identifierNucleic Acids Res 33W116W120 [View Article][PubMed]. [Google Scholar]
  50. Sándor E., Pusztahelyi T., Karaffa L., Karányi Z., Pócsi I., Biró S., Szentirmai A., Pócsi I. (1998). Allosamidin inhibits the fragmentation of Acremonium chrysogenum but does not influence the cephalosporin-C production of the fungusFEMS Microbiol Lett 164231236 [View Article][PubMed]. [Google Scholar]
  51. Seidl V. (2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functionsFungal Biol Rev 223642 [View Article]. [Google Scholar]
  52. Seidl V., Huemer B., Seiboth B., Kubicek C.P. (2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinasesFEBS J 27259235939 [View Article][PubMed]. [Google Scholar]
  53. Seidl-Seiboth V., Ihrmark K., Druzhinina I.S., Karlsson M. (2014). Molecular evolution of Trichoderma chitinases [View Article] In Biotechnology and Biology of Trichoderma, pp. 6778. Edited by Gupta V., Schmoll M., Herrera-Estrella A., Druzhinina I. S., Upadhyay R., Tuohy M.AmsterdamElsevier. [Google Scholar]
  54. Specht C.A., Liu Y., Robbins P.W., Bulawa C.E., Iartchouk N., Winter K.R., Riggle P.J., Rhodes J.C., Dodge C.L.other authors (1996). The chsD chsE genes of Aspergillus nidulans and their roles in chitin synthesisFungal Genet Biol 20153167 [View Article][PubMed]. [Google Scholar]
  55. Stals I., Samyn B., Sergeant K., White T., Hoorelbeke K., Coorevits A., Devreese B., Claeyssens M., Piens K. (2010). Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina FEMS Microbiol Lett 303917 [View Article][PubMed]. [Google Scholar]
  56. Stark M.J.R., Boyd A. (1986). The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encode themEMBO J 519952002 Medline. [Google Scholar]
  57. Sutton J.C., Li D.W., Peng G., Yu H., Zhang P.G., Valdebenito-Sanhueza R.M. (1997). Gliocladium roseum; a versatile adversary of Botrytis cinerea in cropsPlant Disease 81316328 [View Article]. [Google Scholar]
  58. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). mega6: Molecular Evolutionary Genetics Analysis version 6.0Mol Biol Evol 3027252729 [View Article][PubMed]. [Google Scholar]
  59. Thompson J.D., Higgins D.G., Gibson T.J. (1994). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choiceNucleic Acids Res 2246734680 [View Article][PubMed]. [Google Scholar]
  60. Tzelepis G.D., Melin P., Jensen D.F., Stenlid J., Karlsson M. (2012). Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa Fungal Genet Biol 49717730 [View Article][PubMed]. [Google Scholar]
  61. Tzelepis G.D., Melin P., Stenlid J., Jensen D.F., Karlsson M. (2014). Functional analysis of the C-II subgroup killer toxin-like chitinases in the filamentous ascomycete Aspergillus nidulans Fungal Genet Biol 645866 [View Article][PubMed]. [Google Scholar]
  62. Ubhayasekera W., Karlsson M. (2012). Bacterial and fungal chitinase chiJ orthologs evolve under different selective constraints following horizontal gene transferBMC Res Notes 5581 [View Article][PubMed]. [Google Scholar]
  63. Utermark J.K., Karlovsky P. (2008). Genetic transformation of filamentous fungi by Agrobacterium tumefaciens Protocol Exchange http://www.nature.com/protocolexchange/protocols/427..
  64. van Munster J.M., van der Kaaij R.M., Dijkhuizen L., van der Maarel M.J. (2012). Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysisMicrobiology 15821682179 [View Article][PubMed]. [Google Scholar]
  65. Woo S.L., Donzelli B., Scala F., Mach R., Harman G.E., Kubicek C.P., DelSorbo G., Lorito M. (1999). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1Mol Plant Microbe Interact 12419429 [View Article]. [Google Scholar]
  66. Yamazaki H., Tanaka A., Kaneko J., Ohta A., Horiuchi H. (2008). Aspergillus nidulans ChiA is a glycosylphosphatidylinositol (GPI)-anchored chitinase specifically localized at polarized growth sitesFungal Genet Biol 45963972 [View Article][PubMed]. [Google Scholar]
  67. Zapparata A. (2014). Gene expression analysis of ABC- and MFS-transporters in the fungal biocontrol agent Clonostachys rosea MSc thesis, Pisa University, Pisa, Italy.
  68. Zeilinger S., Galhaup C., Payer K., Woo S.L., Mach R.L., Fekete C., Lorito M., Kubicek C.P. (1999). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its hostFungal Genet Biol 26131140 [View Article][PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error