1887

Abstract

is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the ‘-containing vacuole’. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on , and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus and , and was observed for in the replicative but not stationary phase of the biphasic life cycle. Deletion of the genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of and reveals LED209 as a potential lead compound to combat infections with or spp.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000094
2015-07-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1392.html?itemId=/content/journal/micro/10.1099/mic.0.000094&mimeType=html&fmt=ahah

References

  1. Al-Khodor S., Kalachikov S., Morozova I., Price C.T., Abu Kwaik Y.. ( 2009;). The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoa. Infect Immun 77: 374–386 [CrossRef] [PubMed].
    [Google Scholar]
  2. Altman E., Segal G.. ( 2008;). The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol 190: 1985–1996 [CrossRef] [PubMed].
    [Google Scholar]
  3. Anderson M.T., Armstrong S.K.. ( 2006;). The Bordetella bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholamines. J Bacteriol 188: 5731–5740 [CrossRef] [PubMed].
    [Google Scholar]
  4. Armstrong S.K., Brickman T.J., Suhadolc R.J.. ( 2012;). Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormones. Mol Microbiol 84: 446–462 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bader M.W., Sanowar S., Daley M.E., Schneider A.R., Cho U., Xu W., Klevit R.E., Le Moual H., Miller S.I.. ( 2005;). Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122: 461–472 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bassler B.L., Losick R.. ( 2006;). Bacterially speaking. Cell 125: 237–246 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bearson B.L., Bearson S.M.. ( 2008;). The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar Typhimurium. Microb Pathog 44: 271–278 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bouyer S., Imbert C., Rodier M.H., Héchard Y.. ( 2007;). Long-term survival of Legionella pneumophila associated with Acanthamoeba castellanii vesicles. Environ Microbiol 9: 1341–1344 [CrossRef] [PubMed].
    [Google Scholar]
  9. Burton C.L., Chhabra S.R., Swift S., Baldwin T.J., Withers H., Hill S.J., Williams P.. ( 2002;). The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake system. Infect Immun 70: 5913–5923 [CrossRef] [PubMed].
    [Google Scholar]
  10. Byrne B., Swanson M.S.. ( 1998;). Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun 66: 3029–3034 [PubMed].
    [Google Scholar]
  11. Cacalano G., Kays M., Saiman L., Prince A.. ( 1992;). Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expression. J Clin Invest 89: 1866–1874 [CrossRef] [PubMed].
    [Google Scholar]
  12. Cazalet C., Gomez-Valero L., Rusniok C., Lomma M., Dervins-Ravault D., Newton H.J., Sansom F.M., Jarraud S., Zidane N., other authors. ( 2010;). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ disease. PLoS Genet 6: e1000851 [CrossRef] [PubMed].
    [Google Scholar]
  13. Clarke M.B., Hughes D.T., Zhu C., Boedeker E.C., Sperandio V.. ( 2006;). The QseC sensor kinase: a bacterial adrenergic receptor. Proc Natl Acad Sci U S A 103: 10420–10425 [CrossRef] [PubMed].
    [Google Scholar]
  14. Coppi A., Merali S., Eichinger D.. ( 2002;). The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stage. J Biol Chem 277: 8083–8090 [CrossRef] [PubMed].
    [Google Scholar]
  15. Curtis M.M., Russell R., Moreira C.G., Adebesin A.M., Wang C., Williams N.S., Taussig R., Stewart D., Zimmern P., other authors. ( 2014;). QseC inhibitors as an antivirulence approach for Gram-negative pathogens. MBio 5: e02165–e02114 [CrossRef] [PubMed].
    [Google Scholar]
  16. Czyz˙ D.M., Potluri L.P., Jain-Gupta N., Riley S.P., Martinez J.J., Steck T.L., Crosson S., Shuman H.A., Gabay J.E.. ( 2014;). Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogens. MBio 5: e01534–e01514 [CrossRef] [PubMed].
    [Google Scholar]
  17. Faucher S.P., Mueller C.A., Shuman H.A.. ( 2011;). Legionella pneumophila transcriptome during intracellular multiplication in human macrophages. Front Microbiol 2: 60 [CrossRef] [PubMed].
    [Google Scholar]
  18. Feeley J.C., Gibson R.J., Gorman G.W., Langford N.C., Rasheed J.K., Mackel D.C., Baine W.B.. ( 1979;). Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila. J Clin Microbiol 10: 437–441 [PubMed].
    [Google Scholar]
  19. Flierl M.A., Rittirsch D., Nadeau B.A., Chen A.J., Sarma J.V., Zetoune F.S., McGuire S.R., List R.P., Day D.E., other authors. ( 2007;). Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449: 721–725 [CrossRef] [PubMed].
    [Google Scholar]
  20. Flierl M.A., Rittirsch D., Nadeau B.A., Sarma J.V., Day D.E., Lentsch A.B., Huber-Lang M.S., Ward P.A.. ( 2009;). Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One 4: e4414 [CrossRef] [PubMed].
    [Google Scholar]
  21. Freestone P.P., Haigh R.D., Lyte M.. ( 2007a;). Specificity of catecholamine-induced growth in Escherichia coli O157 : H7, Salmonella enterica Yersinia enterocolitica. FEMS Microbiol Lett 269: 221–228 [CrossRef] [PubMed].
    [Google Scholar]
  22. Freestone P.P., Walton N.J., Haigh R.D., Lyte M.. ( 2007b;). Influence of dietary catechols on the growth of enteropathogenic bacteria. Int J Food Microbiol 119: 159–169 [CrossRef] [PubMed].
    [Google Scholar]
  23. Freestone P.P., Sandrini S.M., Haigh R.D., Lyte M.. ( 2008;). Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 16: 55–64 [CrossRef] [PubMed].
    [Google Scholar]
  24. Gal-Mor O., Segal G.. ( 2003;). Identification of CpxR as a positive regulator of icm dot virulence genes of Legionella pneumophila. J Bacteriol 185: 4908–4919 [CrossRef] [PubMed].
    [Google Scholar]
  25. Hadjifrangiskou M., Kostakioti M., Chen S.L., Henderson J.P., Greene S.E., Hultgren S.J.. ( 2011;). A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol Microbiol 80: 1516–1529 [CrossRef] [PubMed].
    [Google Scholar]
  26. Hales L.M., Shuman H.A.. ( 1999;). The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol 181: 4879–4889 [PubMed].
    [Google Scholar]
  27. Harrison C.F., Kicka S., Trofimov V., Berschl K., Ouertatani-Sakouhi H., Ackermann N., Hedberg C., Cosson P., Soldati T., Hilbi H.. ( 2013;). Exploring anti-bacterial compounds against intracellular Legionella. PLoS One 8: e74813 [CrossRef] [PubMed].
    [Google Scholar]
  28. Hermant D., Ménard R., Arricau N., Parsot C., Popoff M.Y.. ( 1995;). Functional conservation of the Salmonella Shigella effectors of entry into epithelial cells. Mol Microbiol 17: 781–789 [CrossRef] [PubMed].
    [Google Scholar]
  29. Hilbi H., Haas A.. ( 2012;). Secretive bacterial pathogens and the secretory pathway. Traffic 13: 1187–1197 [CrossRef] [PubMed].
    [Google Scholar]
  30. Hilbi H., Hoffmann C., Harrison C.F.. ( 2011;). Legionella spp. outdoors: colonization, communication and persistence. Environ Microbiol Rep 3: 286–296 [CrossRef] [PubMed].
    [Google Scholar]
  31. Hubber A., Roy C.R.. ( 2010;). Modulation of host cell function by Legionella pneumophila type IV effectors. Annu Rev Cell Dev Biol 26: 261–283 [CrossRef] [PubMed].
    [Google Scholar]
  32. Hughes D.T., Sperandio V.. ( 2008;). Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 6: 111–120 [CrossRef] [PubMed].
    [Google Scholar]
  33. Hughes D.T., Clarke M.B., Yamamoto K., Rasko D.A., Sperandio V.. ( 2009;). The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC). PLoS Pathog 5: e1000553 [CrossRef] [PubMed].
    [Google Scholar]
  34. Isberg R.R., O'Connor T.J., Heidtman M.. ( 2009;). The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat Rev Microbiol 7: 13–24 [CrossRef] [PubMed].
    [Google Scholar]
  35. Karavolos M.H., Spencer H., Bulmer D.M., Thompson A., Winzer K., Williams P., Hinton J.C., Khan C.M.. ( 2008;). Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responses. BMC Genomics 9: 458 [CrossRef] [PubMed].
    [Google Scholar]
  36. Karavolos M.H., Bulmer D.M., Spencer H., Rampioni G., Schmalen I., Baker S., Pickard D., Gray J., Fookes M., other authors. ( 2011a;). Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin E. EMBO Rep 12: 252–258 [CrossRef] [PubMed].
    [Google Scholar]
  37. Karavolos M.H., Williams P., Khan C.M.. ( 2011b;). Interkingdom crosstalk: host neuroendocrine stress hormones drive the hemolytic behavior of Salmonella typhi. Virulence 2: 371–374 [CrossRef] [PubMed].
    [Google Scholar]
  38. Kicka S., Trofimov V., Harrison C., Ouertatani-Sakouhi H., McKinney J., Scapozza L., Hilbi H., Cosson P., Soldati T.. ( 2014;). Establishment and validation of whole-cell based fluorescence assays to identify anti-mycobacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen system. PLoS One 9: e87834 [CrossRef] [PubMed].
    [Google Scholar]
  39. Kostakioti M., Hadjifrangiskou M., Pinkner J.S., Hultgren S.J.. ( 2009;). QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol Microbiol 73: 1020–1031 [CrossRef] [PubMed].
    [Google Scholar]
  40. Lebeau I., Lammertyn E., De Buck E., Maes L., Geukens N., Van Mellaert L., Anné J.. ( 2004;). Novel transcriptional regulators of Legionella pneumophila that affect replication in Acanthamoeba castellanii. Arch Microbiol 181: 362–370 [CrossRef] [PubMed].
    [Google Scholar]
  41. Lee Y.W., Jin S., Sim W.S., Nester E.W.. ( 1995;). Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 92: 12245–12249 [CrossRef] [PubMed].
    [Google Scholar]
  42. Li L., Xu Z., Zhou Y., Sun L., Liu Z., Chen H., Zhou R.. ( 2012;). Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expression. PLoS One 7: e31121 [CrossRef] [PubMed].
    [Google Scholar]
  43. Lynch D., Fieser N., Glöggler K., Forsbach-Birk V., Marre R.. ( 2003;). The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii. FEMS Microbiol Lett 219: 241–248 [CrossRef] [PubMed].
    [Google Scholar]
  44. Merighi M., Septer A.N., Carroll-Portillo A., Bhatiya A., Porwollik S., McClelland M., Gunn J.S.. ( 2009;). Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of Salmonella enterica serovar Typhimurium. BMC Microbiol 9: 42 [CrossRef] [PubMed].
    [Google Scholar]
  45. Molofsky A.B., Swanson M.S.. ( 2003;). Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol 50: 445–461 [CrossRef] [PubMed].
    [Google Scholar]
  46. Molofsky A.B., Swanson M.S.. ( 2004;). Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol 53: 29–40 [CrossRef] [PubMed].
    [Google Scholar]
  47. Moreira C.G., Weinshenker D., Sperandio V.. ( 2010;). QseC mediates Salmonella enterica serovar typhimurium virulence in vitro in vivo. Infect Immun 78: 914–926 [CrossRef] [PubMed].
    [Google Scholar]
  48. Newton H.J., Ang D.K., van Driel I.R., Hartland E.L.. ( 2010;). Molecular pathogenesis of infections caused by Legionella pneumophila. Clin Microbiol Rev 23: 274–298 [CrossRef] [PubMed].
    [Google Scholar]
  49. Njoroge J., Sperandio V.. ( 2009;). Jamming bacterial communication: new approaches for the treatment of infectious diseases. EMBO Mol Med 1: 201–210 [CrossRef] [PubMed].
    [Google Scholar]
  50. Njoroge J., Sperandio V.. ( 2012;). Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinases. QseC and QseE. Infect Immun 80: 688–703 [CrossRef] [PubMed].
    [Google Scholar]
  51. Novak E.A., Shao H., Daep C.A., Demuth D.R.. ( 2010;). Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infect Immun 78: 2919–2926 [CrossRef] [PubMed].
    [Google Scholar]
  52. O'Connor T.J., Adepoju Y., Boyd D., Isberg R.R.. ( 2011;). Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansion. Proc Natl Acad Sci U S A 108: 14733–14740 [CrossRef] [PubMed].
    [Google Scholar]
  53. Ramakrishnan L., Federspiel N.A., Falkow S.. ( 2000;). Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS family. Science 288: 1436–1439 [CrossRef] [PubMed].
    [Google Scholar]
  54. Rasis M., Segal G.. ( 2009;). The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol 72: 995–1010 [CrossRef] [PubMed].
    [Google Scholar]
  55. Rasko D.A., Moreira C.G., Li R., Reading N.C., Ritchie J.M., Waldor M.K., Williams N., Taussig R., Wei S., other authors. ( 2008;). Targeting QseC signaling and virulence for antibiotic development. Science 321: 1078–1080 [CrossRef] [PubMed].
    [Google Scholar]
  56. Reading N.C., Rasko D.A., Torres A.G., Sperandio V.. ( 2009;). The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesis. Proc Natl Acad Sci U S A 106: 5889–5894 [CrossRef] [PubMed].
    [Google Scholar]
  57. Sadosky A.B., Wiater L.A., Shuman H.A.. ( 1993;). Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun 61: 5361–5373 [PubMed].
    [Google Scholar]
  58. Sandrini S.M., Shergill R., Woodward J., Muralikuttan R., Haigh R.D., Lyte M., Freestone P.P.. ( 2010;). Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol 192: 587–594 [CrossRef] [PubMed].
    [Google Scholar]
  59. Sansonetti P.J., Kopecko D.J., Formal S.B.. ( 1982;). Involvement of a plasmid in the invasive ability of Shigella flexneri. Infect Immun 35: 852–860 [PubMed].
    [Google Scholar]
  60. Segal G., Shuman H.A.. ( 1998;). Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010. Mol Microbiol 30: 197–208 [CrossRef] [PubMed].
    [Google Scholar]
  61. Shank E.A., Kolter R.. ( 2009;). New developments in microbial interspecies signaling. Curr Opin Microbiol 12: 205–214 [CrossRef] [PubMed].
    [Google Scholar]
  62. Spencer H., Karavolos M.H., Bulmer D.M., Aldridge P., Chhabra S.R., Winzer K., Williams P., Khan C.M.. ( 2010;). Genome-wide transposon mutagenesis identifies a role for host neuroendocrine stress hormones in regulating the expression of virulence genes in Salmonella. J Bacteriol 192: 714–724 [CrossRef] [PubMed].
    [Google Scholar]
  63. Sperandio V., Torres A.G., Jarvis B., Nataro J.P., Kaper J.B.. ( 2003;). Bacteria–host communication: the language of hormones. Proc Natl Acad Sci U S A 100: 8951–8956 [CrossRef] [PubMed].
    [Google Scholar]
  64. Spirig T., Tiaden A., Kiefer P., Buchrieser C., Vorholt J.A., Hilbi H.. ( 2008;). The Legionella autoinducer synthase LqsA produces an α-hydroxyketone signaling molecule. J Biol Chem 283: 18113–18123 [CrossRef] [PubMed].
    [Google Scholar]
  65. Steinert M., Flügel M., Schuppler M., Helbig J.H., Supriyono A., Proksch P., Lück P.C.. ( 2001;). The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. FEMS Microbiol Lett 203: 41–47 [CrossRef] [PubMed].
    [Google Scholar]
  66. Subramoni S., Gonzalez J.F., Johnson A., Péchy-Tarr M., Rochat L., Paulsen I., Loper J.E., Keel C., Venturi V.. ( 2011;). Bacterial subfamily of LuxR regulators that respond to plant compounds. Appl Environ Microbiol 77: 4579–4588 [CrossRef] [PubMed].
    [Google Scholar]
  67. Tiaden A., Spirig T., Weber S.S., Brüggemann H., Bosshard R., Buchrieser C., Hilbi H.. ( 2007;). The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol 9: 2903–2920 [CrossRef] [PubMed].
    [Google Scholar]
  68. Vincent C.D., Buscher B.A., Friedman J.R., Williams L.A., Bardill P., Vogel J.P.. ( 2006;). Identification of non-dot/icm suppressors of the Legionella pneumophila ΔdotL lethality phenotype. J Bacteriol 188: 8231–8243 [CrossRef] [PubMed].
    [Google Scholar]
  69. Wang X., Wang Q., Yang M., Xiao J., Liu Q., Wu H., Zhang Y.. ( 2011;). QseBC controls flagellar motility, fimbrial hemagglutination and intracellular virulence in fish pathogen Edwardsiella tarda. Fish Shellfish Immunol 30: 944–953 [CrossRef] [PubMed].
    [Google Scholar]
  70. Weatherby K.E., Zwilling B.S., Lafuse W.P.. ( 2003;). Resistance of macrophages to Mycobacterium avium is induced by α2-adrenergic stimulation. Infect Immun 71: 22–29 [CrossRef] [PubMed].
    [Google Scholar]
  71. Wlater L.A., Sadosky A.B., Shuman H.A.. ( 1994;). Mutagenesis of Legionella pneumophila using Tn903 dlllacZ: identification of a growth-phase-regulated pigmentation gene. Mol Microbiol 11: 641–653 [CrossRef] [PubMed].
    [Google Scholar]
  72. Wu L., Estrada O., Zaborina O., Bains M., Shen L., Kohler J.E., Patel N., Musch M.W., Chang E.B., other authors. ( 2005;). Recognition of host immune activation by Pseudomonas aeruginosa. Science 309: 774–777 [CrossRef] [PubMed].
    [Google Scholar]
  73. Zusman T., Aloni G., Halperin E., Kotzer H., Degtyar E., Feldman M., Segal G.. ( 2007;). The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila Coxiella burnetii. Mol Microbiol 63: 1508–1523 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000094
Loading
/content/journal/micro/10.1099/mic.0.000094
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error