is a facultative intracellular bacterium, which upon inhalation can cause a potentially fatal pneumonia termed Legionnaires’ disease. The opportunistic pathogen grows in environmental amoebae and mammalian macrophages within a unique membrane-bound compartment, the ‘-containing vacuole’. Bacteria are exposed to many environmental cues including small signalling molecules from eukaryotic cells. A number of pathogenic bacteria sense and respond to catecholamine hormones, such as adrenalin and noradrenalin, a process mediated via the QseBC two-component system in some bacteria. In this study, we examined the effect of adrenergic compounds on , and discovered that the adrenergic receptor antagonists benoxathian, naftopidil, propranolol and labetalol, as well as the QseC sensor kinase inhibitor LED209, reduced the growth of in broth or amoebae, while replication in macrophages was enhanced. Growth restriction was common to members of the genus and , and was observed for in the replicative but not stationary phase of the biphasic life cycle. Deletion of the genes indicated that growth inhibition by adrenergics or LED209 is mediated only to a minor extent by this two-component system, implying the presence of other adrenergic sensing systems. This study identifies adrenergic molecules as novel inhibitors of extra- and intracellular growth of and reveals LED209 as a potential lead compound to combat infections with or spp.


Article metrics loading...

Loading full text...

Full text loading...



  1. Al-Khodor S., Kalachikov S., Morozova I., Price C.T., Abu Kwaik Y. (2009). The PmrA/PmrB two-component system of Legionella pneumophila is a global regulator required for intracellular replication within macrophages and protozoaInfect Immun 77374386 [View Article][PubMed]. [Google Scholar]
  2. Altman E., Segal G. (2008). The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substratesJ Bacteriol 19019851996 [View Article][PubMed]. [Google Scholar]
  3. Anderson M.T., Armstrong S.K. (2006). The Bordetella bfe system: growth and transcriptional response to siderophores, catechols, and neuroendocrine catecholaminesJ Bacteriol 18857315740 [View Article][PubMed]. [Google Scholar]
  4. Armstrong S.K., Brickman T.J., Suhadolc R.J. (2012). Involvement of multiple distinct Bordetella receptor proteins in the utilization of iron liberated from transferrin by host catecholamine stress hormonesMol Microbiol 84446462 [View Article][PubMed]. [Google Scholar]
  5. Bader M.W., Sanowar S., Daley M.E., Schneider A.R., Cho U., Xu W., Klevit R.E., Le Moual H., Miller S.I. (2005). Recognition of antimicrobial peptides by a bacterial sensor kinaseCell 122461472 [View Article][PubMed]. [Google Scholar]
  6. Bassler B.L., Losick R. (2006). Bacterially speakingCell 125237246 [View Article][PubMed]. [Google Scholar]
  7. Bearson B.L., Bearson S.M. (2008). The role of the QseC quorum-sensing sensor kinase in colonization and norepinephrine-enhanced motility of Salmonella enterica serovar TyphimuriumMicrob Pathog 44271278 [View Article][PubMed]. [Google Scholar]
  8. Bouyer S., Imbert C., Rodier M.H., Héchard Y. (2007). Long-term survival of Legionella pneumophila associated with Acanthamoeba castellanii vesiclesEnviron Microbiol 913411344 [View Article][PubMed]. [Google Scholar]
  9. Burton C.L., Chhabra S.R., Swift S., Baldwin T.J., Withers H., Hill S.J., Williams P. (2002). The growth response of Escherichia coli to neurotransmitters and related catecholamine drugs requires a functional enterobactin biosynthesis and uptake systemInfect Immun 7059135923 [View Article][PubMed]. [Google Scholar]
  10. Byrne B., Swanson M.S. (1998). Expression of Legionella pneumophila virulence traits in response to growth conditionsInfect Immun 6630293034[PubMed]. [Google Scholar]
  11. Cacalano G., Kays M., Saiman L., Prince A. (1992). Production of the Pseudomonas aeruginosa neuraminidase is increased under hyperosmolar conditions and is regulated by genes involved in alginate expressionJ Clin Invest 8918661874 [View Article][PubMed]. [Google Scholar]
  12. Cazalet C., Gomez-Valero L., Rusniok C., Lomma M., Dervins-Ravault D., Newton H.J., Sansom F.M., Jarraud S., Zidane N., other authors. (2010). Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires’ diseasePLoS Genet 6e1000851 [View Article][PubMed]. [Google Scholar]
  13. Clarke M.B., Hughes D.T., Zhu C., Boedeker E.C., Sperandio V. (2006). The QseC sensor kinase: a bacterial adrenergic receptorProc Natl Acad Sci U S A 1031042010425 [View Article][PubMed]. [Google Scholar]
  14. Coppi A., Merali S., Eichinger D. (2002). The enteric parasite Entamoeba uses an autocrine catecholamine system during differentiation into the infectious cyst stageJ Biol Chem 27780838090 [View Article][PubMed]. [Google Scholar]
  15. Curtis M.M., Russell R., Moreira C.G., Adebesin A.M., Wang C., Williams N.S., Taussig R., Stewart D., Zimmern P., other authors. (2014). QseC inhibitors as an antivirulence approach for Gram-negative pathogensMBio 5e02165e02114 [View Article][PubMed]. [Google Scholar]
  16. Czyz˙ D.M., Potluri L.P., Jain-Gupta N., Riley S.P., Martinez J.J., Steck T.L., Crosson S., Shuman H.A., Gabay J.E. (2014). Host-directed antimicrobial drugs with broad-spectrum efficacy against intracellular bacterial pathogensMBio 5e01534e01514 [View Article][PubMed]. [Google Scholar]
  17. Faucher S.P., Mueller C.A., Shuman H.A. (2011). Legionella pneumophila transcriptome during intracellular multiplication in human macrophagesFront Microbiol 260 [View Article][PubMed]. [Google Scholar]
  18. Feeley J.C., Gibson R.J., Gorman G.W., Langford N.C., Rasheed J.K., Mackel D.C., Baine W.B. (1979). Charcoal-yeast extract agar: primary isolation medium for Legionella pneumophila J Clin Microbiol 10437441[PubMed]. [Google Scholar]
  19. Flierl M.A., Rittirsch D., Nadeau B.A., Chen A.J., Sarma J.V., Zetoune F.S., McGuire S.R., List R.P., Day D.E., other authors. (2007). Phagocyte-derived catecholamines enhance acute inflammatory injuryNature 449721725 [View Article][PubMed]. [Google Scholar]
  20. Flierl M.A., Rittirsch D., Nadeau B.A., Sarma J.V., Day D.E., Lentsch A.B., Huber-Lang M.S., Ward P.A. (2009). Upregulation of phagocyte-derived catecholamines augments the acute inflammatory responsePLoS One 4e4414 [View Article][PubMed]. [Google Scholar]
  21. Freestone P.P., Haigh R.D., Lyte M. (2007a). Specificity of catecholamine-induced growth in Escherichia coli O157 : H7, Salmonella enterica Yersinia enterocolitica FEMS Microbiol Lett 269221228 [View Article][PubMed]. [Google Scholar]
  22. Freestone P.P., Walton N.J., Haigh R.D., Lyte M. (2007b). Influence of dietary catechols on the growth of enteropathogenic bacteriaInt J Food Microbiol 119159169 [View Article][PubMed]. [Google Scholar]
  23. Freestone P.P., Sandrini S.M., Haigh R.D., Lyte M. (2008). Microbial endocrinology: how stress influences susceptibility to infectionTrends Microbiol 165564 [View Article][PubMed]. [Google Scholar]
  24. Gal-Mor O., Segal G. (2003). Identification of CpxR as a positive regulator of icm dot virulence genes of Legionella pneumophila J Bacteriol 18549084919 [View Article][PubMed]. [Google Scholar]
  25. Hadjifrangiskou M., Kostakioti M., Chen S.L., Henderson J.P., Greene S.E., Hultgren S.J. (2011). A central metabolic circuit controlled by QseC in pathogenic Escherichia coli Mol Microbiol 8015161529 [View Article][PubMed]. [Google Scholar]
  26. Hales L.M., Shuman H.A. (1999). The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii J Bacteriol 18148794889[PubMed]. [Google Scholar]
  27. Harrison C.F., Kicka S., Trofimov V., Berschl K., Ouertatani-Sakouhi H., Ackermann N., Hedberg C., Cosson P., Soldati T., Hilbi H. (2013). Exploring anti-bacterial compounds against intracellular Legionella PLoS One 8e74813 [View Article][PubMed]. [Google Scholar]
  28. Hermant D., Ménard R., Arricau N., Parsot C., Popoff M.Y. (1995). Functional conservation of the Salmonella Shigella effectors of entry into epithelial cellsMol Microbiol 17781789 [View Article][PubMed]. [Google Scholar]
  29. Hilbi H., Haas A. (2012). Secretive bacterial pathogens and the secretory pathwayTraffic 1311871197 [View Article][PubMed]. [Google Scholar]
  30. Hilbi H., Hoffmann C., Harrison C.F. (2011). Legionella spp. outdoors: colonization, communication and persistenceEnviron Microbiol Rep 3286296 [View Article][PubMed]. [Google Scholar]
  31. Hubber A., Roy C.R. (2010). Modulation of host cell function by Legionella pneumophila type IV effectorsAnnu Rev Cell Dev Biol 26261283 [View Article][PubMed]. [Google Scholar]
  32. Hughes D.T., Sperandio V. (2008). Inter-kingdom signalling: communication between bacteria and their hostsNat Rev Microbiol 6111120 [View Article][PubMed]. [Google Scholar]
  33. Hughes D.T., Clarke M.B., Yamamoto K., Rasko D.A., Sperandio V. (2009). The QseC adrenergic signaling cascade in enterohemorrhagic E. coli (EHEC)PLoS Pathog 5e1000553 [View Article][PubMed]. [Google Scholar]
  34. Isberg R.R., O'Connor T.J., Heidtman M. (2009). The Legionella pneumophila replication vacuole: making a cosy niche inside host cellsNat Rev Microbiol 71324 [View Article][PubMed]. [Google Scholar]
  35. Karavolos M.H., Spencer H., Bulmer D.M., Thompson A., Winzer K., Williams P., Hinton J.C., Khan C.M. (2008). Adrenaline modulates the global transcriptional profile of Salmonella revealing a role in the antimicrobial peptide and oxidative stress resistance responsesBMC Genomics 9458 [View Article][PubMed]. [Google Scholar]
  36. Karavolos M.H., Bulmer D.M., Spencer H., Rampioni G., Schmalen I., Baker S., Pickard D., Gray J., Fookes M., other authors. (2011a). Salmonella Typhi sense host neuroendocrine stress hormones and release the toxin haemolysin EEMBO Rep 12252258 [View Article][PubMed]. [Google Scholar]
  37. Karavolos M.H., Williams P., Khan C.M. (2011b). Interkingdom crosstalk: host neuroendocrine stress hormones drive the hemolytic behavior of Salmonella typhi Virulence 2371374 [View Article][PubMed]. [Google Scholar]
  38. Kicka S., Trofimov V., Harrison C., Ouertatani-Sakouhi H., McKinney J., Scapozza L., Hilbi H., Cosson P., Soldati T. (2014). Establishment and validation of whole-cell based fluorescence assays to identify anti-mycobacterial compounds using the Acanthamoeba castellanii-Mycobacterium marinum host-pathogen systemPLoS One 9e87834 [View Article][PubMed]. [Google Scholar]
  39. Kostakioti M., Hadjifrangiskou M., Pinkner J.S., Hultgren S.J. (2009). QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli Mol Microbiol 7310201031 [View Article][PubMed]. [Google Scholar]
  40. Lebeau I., Lammertyn E., De Buck E., Maes L., Geukens N., Van Mellaert L., Anné J. (2004). Novel transcriptional regulators of Legionella pneumophila that affect replication in Acanthamoeba castellanii Arch Microbiol 181362370 [View Article][PubMed]. [Google Scholar]
  41. Lee Y.W., Jin S., Sim W.S., Nester E.W. (1995). Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens Proc Natl Acad Sci U S A 921224512249 [View Article][PubMed]. [Google Scholar]
  42. Li L., Xu Z., Zhou Y., Sun L., Liu Z., Chen H., Zhou R. (2012). Global effects of catecholamines on Actinobacillus pleuropneumoniae gene expressionPLoS One 7e31121 [View Article][PubMed]. [Google Scholar]
  43. Lynch D., Fieser N., Glöggler K., Forsbach-Birk V., Marre R. (2003). The response regulator LetA regulates the stationary-phase stress response in Legionella pneumophila and is required for efficient infection of Acanthamoeba castellanii FEMS Microbiol Lett 219241248 [View Article][PubMed]. [Google Scholar]
  44. Merighi M., Septer A.N., Carroll-Portillo A., Bhatiya A., Porwollik S., McClelland M., Gunn J.S. (2009). Genome-wide analysis of the PreA/PreB (QseB/QseC) regulon of Salmonella enterica serovar TyphimuriumBMC Microbiol 942 [View Article][PubMed]. [Google Scholar]
  45. Molofsky A.B., Swanson M.S. (2003). Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replicationMol Microbiol 50445461 [View Article][PubMed]. [Google Scholar]
  46. Molofsky A.B., Swanson M.S. (2004). Differentiate to thrive: lessons from the Legionella pneumophila life cycleMol Microbiol 532940 [View Article][PubMed]. [Google Scholar]
  47. Moreira C.G., Weinshenker D., Sperandio V. (2010). QseC mediates Salmonella enterica serovar typhimurium virulence in vitro in vivo Infect Immun 78914926 [View Article][PubMed]. [Google Scholar]
  48. Newton H.J., Ang D.K., van Driel I.R., Hartland E.L. (2010). Molecular pathogenesis of infections caused by Legionella pneumophila Clin Microbiol Rev 23274298 [View Article][PubMed]. [Google Scholar]
  49. Njoroge J., Sperandio V. (2009). Jamming bacterial communication: new approaches for the treatment of infectious diseasesEMBO Mol Med 1201210 [View Article][PubMed]. [Google Scholar]
  50. Njoroge J., Sperandio V. (2012). Enterohemorrhagic Escherichia coli virulence regulation by two bacterial adrenergic kinasesQseC and QseE. Infect Immun 80688703 [View Article][PubMed]. [Google Scholar]
  51. Novak E.A., Shao H., Daep C.A., Demuth D.R. (2010). Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans Infect Immun 7829192926 [View Article][PubMed]. [Google Scholar]
  52. O'Connor T.J., Adepoju Y., Boyd D., Isberg R.R. (2011). Minimization of the Legionella pneumophila genome reveals chromosomal regions involved in host range expansionProc Natl Acad Sci U S A 1081473314740 [View Article][PubMed]. [Google Scholar]
  53. Ramakrishnan L., Federspiel N.A., Falkow S. (2000). Granuloma-specific expression of Mycobacterium virulence proteins from the glycine-rich PE-PGRS familyScience 28814361439 [View Article][PubMed]. [Google Scholar]
  54. Rasis M., Segal G. (2009). The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectorsMol Microbiol 729951010 [View Article][PubMed]. [Google Scholar]
  55. Rasko D.A., Moreira C.G., Li R., Reading N.C., Ritchie J.M., Waldor M.K., Williams N., Taussig R., Wei S., other authors. (2008). Targeting QseC signaling and virulence for antibiotic developmentScience 32110781080 [View Article][PubMed]. [Google Scholar]
  56. Reading N.C., Rasko D.A., Torres A.G., Sperandio V. (2009). The two-component system QseEF and the membrane protein QseG link adrenergic and stress sensing to bacterial pathogenesisProc Natl Acad Sci U S A 10658895894 [View Article][PubMed]. [Google Scholar]
  57. Sadosky A.B., Wiater L.A., Shuman H.A. (1993). Identification of Legionella pneumophila genes required for growth within and killing of human macrophagesInfect Immun 6153615373[PubMed]. [Google Scholar]
  58. Sandrini S.M., Shergill R., Woodward J., Muralikuttan R., Haigh R.D., Lyte M., Freestone P.P. (2010). Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrinJ Bacteriol 192587594 [View Article][PubMed]. [Google Scholar]
  59. Sansonetti P.J., Kopecko D.J., Formal S.B. (1982). Involvement of a plasmid in the invasive ability of Shigella flexneri Infect Immun 35852860[PubMed]. [Google Scholar]
  60. Segal G., Shuman H.A. (1998). Intracellular multiplication and human macrophage killing by Legionella pneumophila are inhibited by conjugal components of IncQ plasmid RSF1010Mol Microbiol 30197208 [View Article][PubMed]. [Google Scholar]
  61. Shank E.A., Kolter R. (2009). New developments in microbial interspecies signalingCurr Opin Microbiol 12205214 [View Article][PubMed]. [Google Scholar]
  62. Spencer H., Karavolos M.H., Bulmer D.M., Aldridge P., Chhabra S.R., Winzer K., Williams P., Khan C.M. (2010). Genome-wide transposon mutagenesis identifies a role for host neuroendocrine stress hormones in regulating the expression of virulence genes in Salmonella J Bacteriol 192714724 [View Article][PubMed]. [Google Scholar]
  63. Sperandio V., Torres A.G., Jarvis B., Nataro J.P., Kaper J.B. (2003). Bacteria–host communication: the language of hormonesProc Natl Acad Sci U S A 10089518956 [View Article][PubMed]. [Google Scholar]
  64. Spirig T., Tiaden A., Kiefer P., Buchrieser C., Vorholt J.A., Hilbi H. (2008). The Legionella autoinducer synthase LqsA produces an α-hydroxyketone signaling moleculeJ Biol Chem 2831811318123 [View Article][PubMed]. [Google Scholar]
  65. Steinert M., Flügel M., Schuppler M., Helbig J.H., Supriyono A., Proksch P., Lück P.C. (2001). The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila FEMS Microbiol Lett 2034147 [View Article][PubMed]. [Google Scholar]
  66. Subramoni S., Gonzalez J.F., Johnson A., Péchy-Tarr M., Rochat L., Paulsen I., Loper J.E., Keel C., Venturi V. (2011). Bacterial subfamily of LuxR regulators that respond to plant compoundsAppl Environ Microbiol 7745794588 [View Article][PubMed]. [Google Scholar]
  67. Tiaden A., Spirig T., Weber S.S., Brüggemann H., Bosshard R., Buchrieser C., Hilbi H. (2007). The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetACell Microbiol 929032920 [View Article][PubMed]. [Google Scholar]
  68. Vincent C.D., Buscher B.A., Friedman J.R., Williams L.A., Bardill P., Vogel J.P. (2006). Identification of non-dot/icm suppressors of the Legionella pneumophila ΔdotL lethality phenotypeJ Bacteriol 18882318243 [View Article][PubMed]. [Google Scholar]
  69. Wang X., Wang Q., Yang M., Xiao J., Liu Q., Wu H., Zhang Y. (2011). QseBC controls flagellar motility, fimbrial hemagglutination and intracellular virulence in fish pathogen Edwardsiella tarda Fish Shellfish Immunol 30944953 [View Article][PubMed]. [Google Scholar]
  70. Weatherby K.E., Zwilling B.S., Lafuse W.P. (2003). Resistance of macrophages to Mycobacterium avium is induced by α2-adrenergic stimulationInfect Immun 712229 [View Article][PubMed]. [Google Scholar]
  71. Wlater L.A., Sadosky A.B., Shuman H.A. (1994). Mutagenesis of Legionella pneumophila using Tn903 dlllacZ: identification of a growth-phase-regulated pigmentation geneMol Microbiol 11641653 [View Article][PubMed]. [Google Scholar]
  72. Wu L., Estrada O., Zaborina O., Bains M., Shen L., Kohler J.E., Patel N., Musch M.W., Chang E.B., other authors. (2005). Recognition of host immune activation by Pseudomonas aeruginosa Science 309774777 [View Article][PubMed]. [Google Scholar]
  73. Zusman T., Aloni G., Halperin E., Kotzer H., Degtyar E., Feldman M., Segal G. (2007). The response regulator PmrA is a major regulator of the icm/dot type IV secretion system in Legionella pneumophila Coxiella burnetii Mol Microbiol 6315081523 [View Article][PubMed]. [Google Scholar]

Data & Media loading...


Supplementary Data


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error