1887

Abstract

is the dominant pathogen infecting the airways of cystic fibrosis (CF) patients. During the intermittent colonization phase, resembles environmental strains but later evolves to the chronic adapted phenotype characterized by resistance to antibiotics and mutations in the global regulator genes and . Our aim was to understand the metabolic changes occurring over time and between niches of the CF airways. By applying Phenotype MicroArrays, we investigated changes in the carbon and nitrogen catabolism of subsequently clonally related mucoid and non-mucoid (NM) lung and sinus isolates from 10 CF patients (five intermittently colonized/five chronically infected). We found the most pronounced catabolic changes for the early/late NM isolate comparisons, with respiratory reduction seen for all chronically infecting isolates and two intermittently colonizing isolates. Fewer differences were observed between sinus and lung isolates, showing a higher degree of isolate similarity between these two niches. Modest respiratory changes were seen for the early isolate/PAO1 comparisons, indicating colonization with environmental isolates. Assignment of metabolic pathways via the KEGG database showed a prevalence of substrates involved in the metabolism of Ala, Asp and Glu, -Ala, and Arg and Pro. In conclusion, extensive heterogeneity in the metabolic profiles of the isolates was observed from the initial stages of the infection, showing a rapid diversification of the bacteria in the heterogeneous environment of the lung. Metabolic reduction seems to be a common trait and therefore an adaptive phenotype, though it can be reached via multiple metabolic pathways.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000093
2015-07-01
2019-12-06
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1447.html?itemId=/content/journal/micro/10.1099/mic.0.000093&mimeType=html&fmt=ahah

References

  1. Aanaes K. , Rickelt L.F. , Johansen H.K. , von Buchwald C. , Pressler T. , Høiby N. , Jensen P.Ø. . ( 2011;). Decreased mucosal oxygen tension in the maxillary sinuses in patients with cystic fibrosis. J Cyst Fibros 10: 114–120 [CrossRef] [PubMed].
    [Google Scholar]
  2. Aanaes K. , Johansen H.K. , Poulsen S.S. , Pressler T. , Buchwald C. , Høiby N. . ( 2013a;). Secretory IgA as a diagnostic tool for Pseudomonas aeruginosa respiratory colonization. J Cyst Fibros 12: 81–87 [CrossRef] [PubMed].
    [Google Scholar]
  3. Aanaes K. , von Buchwald C. , Hjuler T. , Skov M. , Alanin M. , Johansen H.K. . ( 2013b;). The effect of sinus surgery with intensive follow-up on pathogenic sinus bacteria in patients with cystic fibrosis. Am J Rhinol Allergy 27: e1–e4 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barth A.L. , Pitt T.L. . ( 1995;). Auxotrophic variants of Pseudomonas aeruginosa are selected from prototrophic wild-type strains in respiratory infections in patients with cystic fibrosis. J Clin Microbiol 33: 37–40.
    [Google Scholar]
  5. Barth A.L. , Pitt T.L. . ( 1996;). The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa . J Med Microbiol 45: 110–119 [CrossRef] [PubMed].
    [Google Scholar]
  6. Behrends V. , Ryall B. , Zlosnik J.E.A. , Speert D.P. , Bundy J.G. , Williams H.D. . ( 2013;). Metabolic adaptations of Pseudomonas aeruginosa during cystic fibrosis chronic lung infections. Environ Microbiol 15: 398–408 [CrossRef] [PubMed].
    [Google Scholar]
  7. Bjarnsholt T. , Jensen P.Ø. , Fiandaca M.J. , Pedersen J. , Hansen C.R. , Andersen C.B. , Pressler T. , Givskov M. , Høiby N. . ( 2009;). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44: 547–558 [CrossRef] [PubMed].
    [Google Scholar]
  8. Bochner B.R. . ( 2009;). Global phenotypic characterization of bacteria. FEMS Microbiol Rev 33: 191–205 [CrossRef] [PubMed].
    [Google Scholar]
  9. Boulette M.L. , Baynham P.J. , Jorth P.A. , Kukavica-Ibrulj I. , Longoria A. , Barrera K. , Levesque R.C. , Whiteley M. . ( 2009;). Characterization of alanine catabolism in Pseudomonas aeruginosa and its importance for proliferation in vivo. J Bacteriol 191: 6329–6334 [CrossRef] [PubMed].
    [Google Scholar]
  10. Brennan A.L. , Gyi K.M. , Wood D.M. , Johnson J. , Holliman R. , Baines D.L. , Philips B.J. , Geddes D.M. , Hodson M.E. , Baker E.H. . ( 2007;). Airway glucose concentrations and effect on growth of respiratory pathogens in cystic fibrosis. J Cyst Fibros 6: 101–109.[CrossRef]
    [Google Scholar]
  11. Buchanan P.J. , Ernst R.K. , Elborn J.S. , Schock B. . ( 2009;). Role of CFTR, Pseudomonas aeruginosa and Toll-like receptors in cystic fibrosis lung inflammation. Biochem Soc Trans 37: 863–867 [CrossRef] [PubMed].
    [Google Scholar]
  12. Burns J.L. , Gibson R.L. , McNamara S. , Yim D. , Emerson J. , Rosenfeld M. , Hiatt P. , McCoy K. , Castile R. , other authors . ( 2001;). Longitudinal assessment of Pseudomonas aeruginosa in young children with cystic fibrosis. J Infect Dis 183: 444–452 [CrossRef] [PubMed].
    [Google Scholar]
  13. Ciofu O. , Riis B. , Pressler T. , Poulsen H.E. , Høiby N. . ( 2005;). Occurrence of hypermutable Pseudomonas aeruginosa in cystic fibrosis patients is associated with the oxidative stress caused by chronic lung inflammation. Antimicrob Agents Chemother 49: 2276–2282 [CrossRef] [PubMed].
    [Google Scholar]
  14. Ciofu O. , Lee B. , Johannesson M. , Hermansen N.O. , Meyer P. , Høiby N. , Scandinavian Cystic Fibrosis Study Consortium . ( 2008;). Investigation of the algT operon sequence in mucoid and non-mucoid Pseudomonas aeruginosa isolates from 115 Scandinavian patients with cystic fibrosis and in 88 in vitro non-mucoid revertants. Microbiology 154: 103–113 [CrossRef] [PubMed].
    [Google Scholar]
  15. Ciofu O. , Mandsberg L.F. , Bjarnsholt T. , Wassermann T. , Høiby N. . ( 2010;). Genetic adaptation of Pseudomonas aeruginosa during chronic lung infection of patients with cystic fibrosis: strong and weak mutators with heterogeneous genetic backgrounds emerge in mucA and/or lasR mutants. Microbiology 156: 1108–1119 [CrossRef] [PubMed].
    [Google Scholar]
  16. Ciofu O. , Hansen C.R. , Høiby N. . ( 2013;). Respiratory bacterial infections in cystic fibrosis. Curr Opin Pulm Med 19: 251–258 [CrossRef] [PubMed].
    [Google Scholar]
  17. Craig A. , Mai J. , Cai S. , Jeyaseelan S. . ( 2009;). Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun 77: 568–575 [CrossRef] [PubMed].
    [Google Scholar]
  18. D'Argenio D.A. , Wu M. , Hoffman L.R. , Kulasekara H.D. , Déziel E. , Smith E.E. , Nguyen H. , Ernst R.K. , Larson Freeman T.J. , other authors . ( 2007;). Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64: 512–533 [CrossRef] [PubMed].
    [Google Scholar]
  19. Damkiær S. , Yang L. , Molin S. , Jelsbak L. . ( 2013;). Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. Proc Natl Acad Sci U S A 110: 7766–7771 [CrossRef] [PubMed].
    [Google Scholar]
  20. Darch S.E. , McNally A. , Harrison F. , Corander J. , Barr H.L. , Paszkiewicz K. , Holden S. , Fogarty A. , Crusz S.A. , Diggle S.P. . ( 2015;). Recombination is a key driver of genomic and phenotypic diversity in a Pseudomonas aeruginosa population during cystic fibrosis infection. Sci Rep 5: 7649 [CrossRef] [PubMed].
    [Google Scholar]
  21. Döring G. , Flume P. , Heijerman H. , Elborn J.S. . ( 2012;). Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros 11: 461–479.[CrossRef]
    [Google Scholar]
  22. Downey D.G. , Bell S.C. , Elborn J.S. . ( 2009;). Neutrophils in cystic fibrosis. Thorax 64: 81–88 [CrossRef] [PubMed].
    [Google Scholar]
  23. Feliziani S. , Marvig R.L. , Luján A.M. , Moyano A.J. , Di Rienzo J.A. , Krogh Johansen H. , Molin S. , Smania A.M. . ( 2014;). Coexistence and within-host evolution of diversified lineages of hypermutable Pseudomonas aeruginosa in long-term cystic fibrosis infections. PLoS Genet 10: e1004651 [CrossRef] [PubMed].
    [Google Scholar]
  24. Folkesson A. , Jelsbak L. , Yang L. , Johansen H.K. , Ciofu O. , Høiby N. , Molin S. . ( 2012;). Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol 10: 841–851 [CrossRef] [PubMed].
    [Google Scholar]
  25. Fothergill J.L. , Neill D.R. , Loman N. , Winstanley C. , Kadioglu A. . ( 2014;). Pseudomonas aeruginosa adaptation in the nasopharyngeal reservoir leads to migration and persistence in the lungs. Nat Commun 5: 4780 [CrossRef] [PubMed].
    [Google Scholar]
  26. Frederiksen B. , Koch C. , Høiby N. . ( 1997;). Antibiotic treatment of initial colonization with Pseudomonas aeruginosa postpones chronic infection and prevents deterioration of pulmonary function in cystic fibrosis. Pediatr Pulmonol 23: 330–335 [CrossRef] [PubMed].
    [Google Scholar]
  27. Garred P. , Pressler T. , Madsen H.O. , Frederiksen B. , Svejgaard A. , Høiby N. , Schwartz M. , Koch C. . ( 1999;). Association of mannose-binding lectin gene heterogeneity with severity of lung disease and survival in cystic fibrosis. J Clin Invest 104: 431–437 [CrossRef] [PubMed].
    [Google Scholar]
  28. Hansen C.R. , Pressler T. , Høiby N. . ( 2008;). Early aggressive eradication therapy for intermittent Pseudomonas aeruginosa airway colonization in cystic fibrosis patients: 15 years experience. J Cyst Fibros 7: 523–530.[CrossRef]
    [Google Scholar]
  29. Hansen S.K. , Rau M.H. , Johansen H.K. , Ciofu O. , Jelsbak L. , Yang L. , Folkesson A. , Jarmer H.O. , Aanæs K. , other authors . ( 2012;). Evolution and diversification of Pseudomonas aeruginosa in the paranasal sinuses of cystic fibrosis children have implications for chronic lung infection. ISME J 6: 31–45 [CrossRef] [PubMed].
    [Google Scholar]
  30. Häussler S. . ( 2004;). Biofilm formation by the small colony variant phenotype of Pseudomonas aeruginosa . Environ Microbiol 6: 546–551 [CrossRef] [PubMed].
    [Google Scholar]
  31. Hoboth C. , Hoffmann R. , Eichner A. , Henke C. , Schmoldt S. , Imhof A. , Heesemann J. , Hogardt M. . ( 2009;). Dynamics of adaptive microevolution of hypermutable Pseudomonas aeruginosa during chronic pulmonary infection in patients with cystic fibrosis. J Infect Dis 200: 118–130 [CrossRef] [PubMed].
    [Google Scholar]
  32. Hoffman L.R. , Richardson A.R. , Houston L.S. , Kulasekara H.D. , Martens-Habbena W. , Klausen M. , Burns J.L. , Stahl D.A. , Hassett D.J. , other authors . ( 2010;). Nutrient availability as a mechanism for selection of antibiotic tolerant Pseudomonas aeruginosa within the CF airway. PLoS Pathog 6: e1000712 [CrossRef] [PubMed].
    [Google Scholar]
  33. Hoffmann N. , Rasmussen T.B. , Jensen P.Ø. , Stub C. , Hentzer M. , Molin S. , Ciofu O. , Givskov M. , Johansen H.K. , Høiby N. . ( 2005;). Novel mouse model of chronic Pseudomonas aeruginosa lung infection mimicking cystic fibrosis. Infect Immun 73: 2504–2514 [CrossRef] [PubMed].
    [Google Scholar]
  34. Hogardt M. , Heesemann J. . ( 2010;). Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 300: 557–562 [CrossRef] [PubMed].
    [Google Scholar]
  35. Høiby N. . ( 1974;). Epidemiological investigations of the respiratory tract bacteriology in patients with cystic fibrosis. Acta Pathol Microbiol Scand B Microbiol Immunol 82: 541–550.
    [Google Scholar]
  36. Høiby N. , Bjarnsholt T. , Givskov M. , Molin S. , Ciofu O. . ( 2010a;). Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35: 322–332 [CrossRef] [PubMed].
    [Google Scholar]
  37. Høiby N. , Ciofu O. , Bjarnsholt T. . ( 2010b;). Pseudomonas aeruginosa biofilms in cystic fibrosis. Future Microbiol 5: 1663–1674 [CrossRef] [PubMed].
    [Google Scholar]
  38. Holloway B.W. . ( 1955;). Genetic recombination in Pseudomonas aeruginosa . J Gen Microbiol 13: 572–581 [CrossRef] [PubMed].
    [Google Scholar]
  39. Jelsbak L. , Johansen H.K. , Frost A.L. , Thøgersen R. , Thomsen L.E. , Ciofu O. , Yang L. , Haagensen J.A.J. , Høiby N. , Molin S. . ( 2007;). Molecular epidemiology and dynamics of Pseudomonas aeruginosa populations in lungs of cystic fibrosis patients. Infect Immun 75: 2214–2224 [CrossRef] [PubMed].
    [Google Scholar]
  40. Johansen H.K. , Nørregaard L. , Gøtzsche P.C. , Pressler T. , Koch C. , Høiby N. . ( 2004;). Antibody response to Pseudomonas aeruginosa in cystic fibrosis patients: a marker of therapeutic success?—A 30-year cohort study of survival in Danish CF patients after onset of chronic P. aeruginosa lung infection. Pediatr Pulmonol 37: 427–432 [CrossRef] [PubMed].
    [Google Scholar]
  41. Johansen H.K. , Moskowitz S.M. , Ciofu O. , Pressler T. , Høiby N. . ( 2008;). Spread of colistin resistant non-mucoid Pseudomonas aeruginosa among chronically infected Danish cystic fibrosis patients. J Cyst Fibros 7: 391–397 [CrossRef] [PubMed].
    [Google Scholar]
  42. Johansen H.K. , Aanaes K. , Pressler T. , Nielsen K.G. , Fisker J. , Skov M. , Høiby N. , von Buchwald C. . ( 2012;). Colonisation and infection of the paranasal sinuses in cystic fibrosis patients is accompanied by a reduced PMN response. J Cyst Fibros 11: 525–531 [CrossRef] [PubMed].
    [Google Scholar]
  43. Klausen M. , Heydorn A. , Ragas P. , Lambertsen L. , Aaes-Jørgensen A. , Molin S. , Tolker-Nielsen T. . ( 2003;). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48: 1511–1524 [CrossRef] [PubMed].
    [Google Scholar]
  44. Knudsen P.K. , Olesen H.V. , Høiby N. , Johannesson M. , Karpati F. , Laerum B.N. , Meyer P. , Pressler T. , Lindblad A. , Scandinavian CF Study Consortium (SCFSC) . ( 2009;). Differences in prevalence and treatment of Pseudomonas aeruginosa in cystic fibrosis centres in Denmark, Norway and Sweden. J Cyst Fibros 8: 135–142 [CrossRef] [PubMed].
    [Google Scholar]
  45. Koch C. , Høiby N. . ( 1993;). Pathogenesis of cystic fibrosis. Lancet 341: 1065–1069 [CrossRef] [PubMed].
    [Google Scholar]
  46. Kolpen M. , Hansen C.R. , Bjarnsholt T. , Moser C. , Christensen L.D. , van Gennip M. , Ciofu O. , Mandsberg L. , Kharazmi A. , other authors . ( 2010;). Polymorphonuclear leucocytes consume oxygen in sputum from chronic Pseudomonas aeruginosa pneumonia in cystic fibrosis. Thorax 65: 57–62 [CrossRef] [PubMed].
    [Google Scholar]
  47. Lindberg R.B. , Latta R.L. . ( 1974;). Phage typing of Pseudomonas aeruginosa: clinical and epidemiologic considerations. J Infect Dis 130: S33–S42 [CrossRef] [PubMed].
    [Google Scholar]
  48. Maharjan R.P. , Seeto S. , Ferenci T. . ( 2007;). Divergence and redundancy of transport and metabolic rate-yield strategies in a single Escherichia coli population. J Bacteriol 189: 2350–2358 [CrossRef] [PubMed].
    [Google Scholar]
  49. Malone J.G. , Jaeger T. , Spangler C. , Ritz D. , Spang A. , Arrieumerlou C. , Kaever V. , Landmann R. , Jenal U. . ( 2010;). YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa . PLoS Pathog 6: e1000804 [CrossRef] [PubMed].
    [Google Scholar]
  50. Markussen T. , Marvig R.L. , Gómez-Lozano M. , Aanæs K. , Burleigh A.E. , Høiby N. , Johansen H.K. , Molin S. , Jelsbak L. . ( 2014;). Environmental heterogeneity drives within-host diversification and evolution of Pseudomonas aeruginosa . MBio 5: e01592–e01e14 [CrossRef] [PubMed].
    [Google Scholar]
  51. Marvig R.L. , Sommer L.M. , Molin S. , Johansen H.K. . ( 2015;). Convergent evolution and adaptation of Pseudomonas aeruginosa within patients with cystic fibrosis. Nat Genet 47: 57–64 [CrossRef] [PubMed].
    [Google Scholar]
  52. Mathee K. , Ciofu O. , Sternberg C. , Lindum P.W. , Campbell J.I. , Jensen P. , Johnsen A.H. , Givskov M. , Ohman D.E. , other authors . ( 1999;). Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145: 1349–1357 [CrossRef] [PubMed].
    [Google Scholar]
  53. Moeller W. , Schuschnig U. , Meyer G. , Häussinger K. , Keller M. , Junge-Hülsing B. , Mentzel H. . ( 2009;). Ventilation and aerosolized drug delivery to the paranasal sinuses using pulsating airflow - a preliminary study. Rhinology 47: 405–412.
    [Google Scholar]
  54. Mowat E. , Paterson S. , Fothergill J.L. , Wright E.A. , Ledson M.J. , Walshaw M.J. , Brockhurst M.A. , Winstanley C. . ( 2011;). Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. Am J Respir Crit Care Med 183: 1674–1679 [CrossRef] [PubMed].
    [Google Scholar]
  55. Nishijyo T. , Haas D. , Itoh Y. . ( 2001;). The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa . Mol Microbiol 40: 917–931 [CrossRef] [PubMed].
    [Google Scholar]
  56. Oberhardt M.A. , Puchałka J. , Fryer K.E. , Martins dos Santos V.A.P. , Papin J.A. . ( 2008;). Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190: 2790–2803 [CrossRef] [PubMed].
    [Google Scholar]
  57. Palmer K.L. , Mashburn L.M. , Singh P.K. , Whiteley M. . ( 2005;). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187: 5267–5277 [CrossRef] [PubMed].
    [Google Scholar]
  58. Palmer K.L. , Aye L.M. , Whiteley M. . ( 2007;). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189: 8079–8087 [CrossRef] [PubMed].
    [Google Scholar]
  59. Palmer G.C. , Palmer K.L. , Jorth P.A. , Whiteley M. . ( 2010;). Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol 192: 2722–2728 [CrossRef] [PubMed].
    [Google Scholar]
  60. Pedersen S.S. , Møller H. , Espersen F. , Sørensen C.H. , Jensen T. , Høiby N. . ( 1992;). Mucosal immunity to Pseudomonas aeruginosa alginate in cystic fibrosis. APMIS 100: 326–334 [CrossRef] [PubMed].
    [Google Scholar]
  61. Pressler T. , Frederiksen B. , Skov M. , Garred P. , Koch C. , Høiby N. . ( 2006;). Early rise of anti-Pseudomonas antibodies and a mucoid phenotype of Pseudomonas aeruginosa are risk factors for development of chronic lung infection – a case control study. J Cyst Fibros 5: 9–15.[CrossRef]
    [Google Scholar]
  62. Pressler T. , Karpati F. , Granström M. , Knudsen P.K. , Lindblad A. , Hjelte L. , Olesen H.V. , Meyer P. , Høiby N. , Scandinavian CF Study Consortium . ( 2009;). Diagnostic significance of measurements of specific IgG antibodies to Pseudomonas aeruginosa by three different serological methods. J Cyst Fibros 8: 37–42 [CrossRef] [PubMed].
    [Google Scholar]
  63. Rainey P.B. , Travisano M. . ( 1998;). Adaptive radiation in a heterogeneous environment. Nature 394: 69–72 [CrossRef] [PubMed].
    [Google Scholar]
  64. Rasmussen T.B. , Skindersoe M.E. , Bjarnsholt T. , Phipps R.K. , Christensen K.B. , Jensen P.O. , Andersen J.B. , Koch B. , Larsen T.O. , other authors . ( 2005;). Identity and effects of quorum-sensing inhibitors produced by Penicillium species. Microbiology 151: 1325–1340 [CrossRef] [PubMed].
    [Google Scholar]
  65. Rojo F. . ( 2010;). Carbon catabolite repression in Pseudomonas: optimizing metabolic versatility and interactions with the environment. FEMS Microbiol Rev 34: 658–684.[CrossRef]
    [Google Scholar]
  66. Rudkjøbing V.B. , Thomsen T.R. , Alhede M. , Kragh K.N. , Nielsen P.H. , Johansen U.R. , Givskov M. , Høiby N. , Bjarnsholt T. . ( 2012;). The micro-organisms in chronically infected end-stage and non-end-stage cystic fibrosis patients. FEMS Immunol Med Microbiol 65: 236–244 [CrossRef] [PubMed].
    [Google Scholar]
  67. Schobert M. , Jahn D. . ( 2010;). Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. Int J Med Microbiol 300: 549–556 [CrossRef] [PubMed].
    [Google Scholar]
  68. Stoltz D.A. , Meyerholz D.K. , Welsh M.J. . ( 2015;). Origins of cystic fibrosis lung disease. N Engl J Med 372: 351–362 [CrossRef] [PubMed].
    [Google Scholar]
  69. Taylor R.F. , Hodson M.E. , Pitt T.L. . ( 1993;). Adult cystic fibrosis: association of acute pulmonary exacerbations and increasing severity of lung disease with auxotrophic mutants of Pseudomonas aeruginosa . Thorax 48: 1002–1005 [CrossRef] [PubMed].
    [Google Scholar]
  70. Tenover F.C. , Arbeit R.D. , Goering R.V. , Mickelsen P.A. , Murray B.E. , Persing D.H. , Swaminathan B. . ( 1995;). Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33: 2233–2239.
    [Google Scholar]
  71. Thomas S.R. , Ray A. , Hodson M.E. , Pitt T.L. . ( 2000;). Increased sputum amino acid concentrations and auxotrophy of Pseudomonas aeruginosa in severe cystic fibrosis lung disease. Thorax 55: 795–797 [CrossRef] [PubMed].
    [Google Scholar]
  72. Totten P.A. , Lara J.C. , Lory S. . ( 1990;). The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol 172: 389–396.
    [Google Scholar]
  73. Tramper-Stranders G.A. , van der Ent C.K. , Molin S. , Yang L. , Hansen S.K. , Rau M.H. , Ciofu O. , Johansen H.K. , Wolfs T.F.W. . ( 2012;). Initial Pseudomonas aeruginosa infection in patients with cystic fibrosis: characteristics of eradicated and persistent isolates. Clin Microbiol Infect 18: 567–574 [CrossRef] [PubMed].
    [Google Scholar]
  74. Valentini M. , Storelli N. , Lapouge K. . ( 2011;). Identification of C4-dicarboxylate transport systems in Pseudomonas aeruginosa PAO1. J Bacteriol 193: 4307–4316 [CrossRef] [PubMed].
    [Google Scholar]
  75. Wahba A.H. , Darrell J.H. . ( 1965;). The identification of atypical strains of Pseudomonas aeruginosa . J Gen Microbiol 38: 329–342 [CrossRef] [PubMed].
    [Google Scholar]
  76. Workentine M.L. , Sibley C.D. , Glezerson B. , Purighalla S. , Norgaard-Gron J.C. , Parkins M.D. , Rabin H.R. , Surette M.G. . ( 2013;). Phenotypic heterogeneity of Pseudomonas aeruginosa populations in a cystic fibrosis patient. PLoS One 8: e60225 [CrossRef] [PubMed].
    [Google Scholar]
  77. Yang L. , Haagensen J.A.J. , Jelsbak L. , Johansen H.K. , Sternberg C. , Høiby N. , Molin S. . ( 2008;). In situ growth rates and biofilm development of Pseudomonas aeruginosa populations in chronic lung infections. J Bacteriol 190: 2767–2776 [CrossRef] [PubMed].
    [Google Scholar]
  78. Yang L. , Jelsbak L. , Marvig R.L. , Damkiær S. , Workman C.T. , Rau M.H. , Hansen S.K. , Folkesson A. , Johansen H.K. , other authors . ( 2011;). Evolutionary dynamics of bacteria in a human host environment. Proc Natl Acad Sci U S A 108: 7481–7486 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000093
Loading
/content/journal/micro/10.1099/mic.0.000093
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error