1887

Abstract

Two-component signal transduction involves phosphoryl transfer between a histidine kinase sensor and a response regulator effector. The nitrate-responsive two-component signal transduction systems in represent a paradigm for a cross-regulation network, in which the paralogous sensor–response regulator pairs, NarX–NarL and NarQ–NarP, exhibit both cognate (e.g. NarX–NarL) and non-cognate (e.g. NarQ–NarL) interactions to control output. Here, we describe results from bacterial adenylate cyclase two-hybrid (BACTH) analysis to examine sensor dimerization as well as interaction between sensor–response regulator cognate and non-cognate pairs. Although results from BACTH analysis indicated that the NarX and NarQ sensors interact with each other, results from intragenic complementation tests demonstrate that they do not form functional heterodimers. Additionally, intragenic complementation shows that both NarX and NarQ undergo intermolecular autophosphorylation, deviating from the previously reported correlation between DHp (imerization and istidyl hosphotransfer) domain loop handedness and autophosphorylation mode. Results from BACTH analysis revealed robust interactions for the NarX–NarL, NarQ–NarL and NarQ–NarP pairs but a much weaker interaction for the NarX–NarP pair. This demonstrates that asymmetrical cross-regulation results from differential binding affinities between different sensor–regulator pairs. Finally, results indicate that the NarL effector (DNA-binding) domain inhibits NarX–NarL interaction. Missense substitutions at receiver domain residue Ser-80 enhanced NarX–NarL interaction, apparently by destabilizing the NarL receiver–effector domain interface.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000092
2015-07-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1504.html?itemId=/content/journal/micro/10.1099/mic.0.000092&mimeType=html&fmt=ahah

References

  1. Albanesi D. , Martín M. , Trajtenberg F. , Mansilla M.C. , Haouz A. , Alzari P.M. , de Mendoza D. , Buschiazzo A. . ( 2009;). Structural plasticity and catalysis regulation of a thermosensor histidine kinase. Proc Natl Acad Sci U S A 106: 16185–16190 [CrossRef] [PubMed].
    [Google Scholar]
  2. Ashenberg O. , Keating A.E. , Laub M.T. . ( 2013;). Helix bundle loops determine whether histidine kinases autophosphorylate in cis or in trans . J Mol Biol 425: 1198–1209 [CrossRef] [PubMed].
    [Google Scholar]
  3. Baikalov I. , Schröder I. , Kaczor-Grzeskowiak M. , Grzeskowiak K. , Gunsalus R.P. , Dickerson R.E. . ( 1996;). Structure of the Escherichia coli response regulator NarL. Biochemistry 35: 11053–11061 [CrossRef] [PubMed].
    [Google Scholar]
  4. Barbieri C.M. , Mack T.R. , Robinson V.L. , Miller M.T. , Stock A.M. . ( 2010;). Regulation of response regulator autophosphorylation through interdomain contacts. J Biol Chem 285: 32325–32335 [CrossRef] [PubMed].
    [Google Scholar]
  5. Bartolomé B. , Jubete Y. , Martínez E. , de la Cruz F. . ( 1991;). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102: 75–78 [CrossRef] [PubMed].
    [Google Scholar]
  6. Bordoli L. , Kiefer F. , Arnold K. , Benkert P. , Battey J. , Schwede T. . ( 2009;). Protein structure homology modeling using swiss-model workspace. Nat Protoc 4: 1–13 [CrossRef] [PubMed].
    [Google Scholar]
  7. Brickman E. , Soll L. , Beckwith J. . ( 1973;). Genetic characterization of mutations which affect catabolite-sensitive operons in Escherichia coli, including deletions of the gene for adenyl cyclase. J Bacteriol 116: 582–587 [PubMed].
    [Google Scholar]
  8. Cai S.J. , Inouye M. . ( 2003;). Spontaneous subunit exchange and biochemical evidence for trans-autophosphorylation in a dimer of Escherichia coli histidine kinase (EnvZ). J Mol Biol 329: 495–503 [CrossRef] [PubMed].
    [Google Scholar]
  9. Casino P. , Rubio V. , Marina A. . ( 2009;). Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139: 325–336 [CrossRef] [PubMed].
    [Google Scholar]
  10. Chang A.C.Y. , Cohen S.N. . ( 1978;). Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J Bacteriol 134: 1141–1156 [PubMed].
    [Google Scholar]
  11. Cheung J. , Hendrickson W.A. . ( 2009;). Structural analysis of ligand stimulation of the histidine kinase NarX. Structure 17: 190–201 [CrossRef] [PubMed].
    [Google Scholar]
  12. Da Re S. , Schumacher J. , Rousseau P. , Fourment J. , Ebel C. , Kahn D. . ( 1999;). Phosphorylation-induced dimerization of the FixJ receiver domain. Mol Microbiol 34: 504–511 [CrossRef] [PubMed].
    [Google Scholar]
  13. Darwin A.J. , Tyson K.L. , Busby S.J. , Stewart V. . ( 1997;). Differential regulation by the homologous response regulators NarL and NarP of Escherichia coli K-12 depends on DNA binding site arrangement. Mol Microbiol 25: 583–595 [CrossRef] [PubMed].
    [Google Scholar]
  14. Egan S.M. , Stewart V. . ( 1991;). Mutational analysis of nitrate regulatory gene narL in Escherichia coli K-12. J Bacteriol 173: 4424–4432 [PubMed].
    [Google Scholar]
  15. Eldridge A.M. , Kang H.S. , Johnson E. , Gunsalus R. , Dahlquist F.W. . ( 2002;). Effect of phosphorylation on the interdomain interaction of the response regulator, NarL. Biochemistry 41: 15173–15180 [CrossRef] [PubMed].
    [Google Scholar]
  16. Falord M. , Karimova G. , Hiron A. , Msadek T. . ( 2012;). GraXSR proteins interact with the VraFG ABC transporter to form a five-component system required for cationic antimicrobial peptide sensing and resistance in Staphylococcus aureus . Antimicrob Agents Chemother 56: 1047–1058 [CrossRef] [PubMed].
    [Google Scholar]
  17. Gao R. , Stock A.M. . ( 2009;). Biological insights from structures of two-component proteins. Annu Rev Microbiol 63: 133–154 [CrossRef] [PubMed].
    [Google Scholar]
  18. Goodman A.L. , Merighi M. , Hyodo M. , Ventre I. , Filloux A. , Lory S. . ( 2009;). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev 23: 249–259 [CrossRef] [PubMed].
    [Google Scholar]
  19. Grebe T.W. , Stock J.B. . ( 1999;). The histidine protein kinase superfamily. Adv Microb Physiol 41: 139–227 [CrossRef] [PubMed].
    [Google Scholar]
  20. Gueguen E. , Flores-Kim J. , Darwin A.J. . ( 2011;). The Yersinia enterocolitica phage shock proteins B and C can form homodimers and heterodimers in vivo with the possibility of close association between multiple domains. J Bacteriol 193: 5747–5758 [CrossRef] [PubMed].
    [Google Scholar]
  21. Guo Q. , Shen Y. , Lee Y.-S. , Gibbs C.S. , Mrksich M. , Tang W.-J. . ( 2005;). Structural basis for the interaction of Bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J 24: 3190–3201 [CrossRef] [PubMed].
    [Google Scholar]
  22. Hazelbauer G.L. , Falke J.J. , Parkinson J.S. . ( 2008;). Bacterial chemoreceptors: high-performance signaling in networked arrays. Trends Biochem Sci 33: 9–19 [CrossRef] [PubMed].
    [Google Scholar]
  23. Heikaus C.C. , Pandit J. , Klevit R.E. . ( 2009;). Cyclic nucleotide binding GAF domains from phosphodiesterases: structural and mechanistic insights. Structure 17: 1551–1557 [CrossRef] [PubMed].
    [Google Scholar]
  24. Huynh T.N. , Stewart V. . ( 2011;). Negative control in two-component signal transduction by transmitter phosphatase activity. Mol Microbiol 82: 275–286 [CrossRef] [PubMed].
    [Google Scholar]
  25. Huynh T.N. , Noriega C.E. , Stewart V. . ( 2010;). Conserved mechanism for sensor phosphatase control of two-component signaling revealed in the nitrate sensor NarX. Proc Natl Acad Sci U S A 107: 21140–21145 [CrossRef] [PubMed].
    [Google Scholar]
  26. Huynh T.N. , Noriega C.E. , Stewart V. . ( 2013;). Missense substitutions reflecting regulatory control of transmitter phosphatase activity in two-component signalling. Mol Microbiol 88: 459–472 [CrossRef] [PubMed].
    [Google Scholar]
  27. Ishihama A. , Kori A. , Koshio E. , Yamada K. , Maeda H. , Shimada T. , Makinoshima H. , Iwata A. , Fujita N. . ( 2014;). Intracellular concentrations of 65 species of transcription factors with known regulatory functions in Escherichia coli . J Bacteriol 196: 2718–2727 [CrossRef] [PubMed].
    [Google Scholar]
  28. Karimova G. , Pidoux J. , Ullmann A. , Ladant D. . ( 1998;). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95: 5752–5756 [CrossRef] [PubMed].
    [Google Scholar]
  29. Karimova G. , Dautin N. , Ladant D. . ( 2005;). Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. J Bacteriol 187: 2233–2243 [CrossRef] [PubMed].
    [Google Scholar]
  30. Laub M.T. , Goulian M. . ( 2007;). Specificity in two-component signal transduction pathways. Annu Rev Genet 41: 121–145 [CrossRef] [PubMed].
    [Google Scholar]
  31. Leonard P.G. , Golemi-Kotra D. , Stock A.M. . ( 2013;). Phosphorylation-dependent conformational changes and domain rearrangements in Staphylococcus aureus VraR activation. Proc Natl Acad Sci U S A 110: 8525–8530 [CrossRef] [PubMed].
    [Google Scholar]
  32. Lin A.V. , Stewart V. . ( 2010;). Functional roles for the GerE-family carboxyl-terminal domains of nitrate response regulators NarL and NarP of Escherichia coli K-12. Microbiology 156: 2933–2943 [CrossRef] [PubMed].
    [Google Scholar]
  33. Lin-Chao S. , Chen W.-T. , Wong T.-T. . ( 1992;). High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6: 3385–3393 [CrossRef] [PubMed].
    [Google Scholar]
  34. Maris A.E. , Sawaya M.R. , Kaczor-Grzeskowiak M. , Jarvis M.R. , Bearson S.M. , Kopka M.L. , Schröder I. , Gunsalus R.P. , Dickerson R.E. . ( 2002;). Dimerization allows DNA target site recognition by the NarL response regulator. Nat Struct Biol 9: 771–778 [CrossRef] [PubMed].
    [Google Scholar]
  35. McCallum N. , Meier P.S. , Heusser R. , Berger-Bächi B. . ( 2011;). Mutational analyses of open reading frames within the vraSR operon and their roles in the cell wall stress response of Staphylococcus aureus . Antimicrob Agents Chemother 55: 1391–1402 [CrossRef] [PubMed].
    [Google Scholar]
  36. Miller J.H. . ( 1972;). Experiments in Molecular Genetics., Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  37. Ninfa E.G. , Atkinson M.R. , Kamberov E.S. , Ninfa A.J. . ( 1993;). Mechanism of autophosphorylation of Escherichia coli nitrogen regulator II (NRII or NtrB): trans-phosphorylation between subunits. J Bacteriol 175: 7024–7032 [PubMed].
    [Google Scholar]
  38. Noriega C.E. , Lin H.-Y. , Chen L.-L. , Williams S.B. , Stewart V. . ( 2010;). Asymmetric cross-regulation between the nitrate-responsive NarX-NarL and NarQ-NarP two-component regulatory systems from Escherichia coli K-12. Mol Microbiol 75: 394–412 [CrossRef] [PubMed].
    [Google Scholar]
  39. Parkinson J.S. . ( 2010;). Signaling mechanisms of HAMP domains in chemoreceptors and sensor kinases. Annu Rev Microbiol 64: 101–122 [CrossRef] [PubMed].
    [Google Scholar]
  40. Peña-Sandoval G.R. , Georgellis D. . ( 2010;). The ArcB sensor kinase of Escherichia coli autophosphorylates by an intramolecular reaction. J Bacteriol 192: 1735–1739 [CrossRef] [PubMed].
    [Google Scholar]
  41. Podgornaia A.I. , Laub M.T. . ( 2013;). Determinants of specificity in two-component signal transduction. Curr Opin Microbiol 16: 156–162 [CrossRef] [PubMed].
    [Google Scholar]
  42. Punta M. , Coggill P.C. , Eberhardt R.Y. , Mistry J. , Tate J. , Boursnell C. , Pang N. , Forslund K. , Ceric G. , other authors . ( 2012;). The Pfam protein families database. Nucleic Acids Res 40: (D1), D290–D301 [CrossRef] [PubMed].
    [Google Scholar]
  43. Rabin R.S. , Stewart V. . ( 1993;). Dual response regulators (NarL and NarP) interact with dual sensors (NarX and NarQ) to control nitrate- and nitrite-regulated gene expression in Escherichia coli K-12. J Bacteriol 175: 3259–3268 [PubMed].
    [Google Scholar]
  44. Scheu P. , Sdorra S. , Liao Y.F. , Wegner M. , Basché T. , Unden G. , Erker W. . ( 2008;). Polar accumulation of the metabolic sensory histidine kinases DcuS and CitA in Escherichia coli . Microbiology 154: 2463–2472 [CrossRef] [PubMed].
    [Google Scholar]
  45. Scheu P.D. , Witan J. , Rauschmeier M. , Graf S. , Liao Y.F. , Ebert-Jung A. , Basché T. , Erker W. , Unden G. . ( 2012;). CitA/CitB two-component system regulating citrate fermentation in Escherichia coli and its relation to the DcuS/DcuR system in vivo . J Bacteriol 194: 636–645 [CrossRef] [PubMed].
    [Google Scholar]
  46. Sivanesan D. , Hancock M.A. , Villamil Giraldo A.M. , Baron C. . ( 2010;). Quantitative analysis of VirB8-VirB9-VirB10 interactions provides a dynamic model of type IV secretion system core complex assembly. Biochemistry 49: 4483–4493 [CrossRef] [PubMed].
    [Google Scholar]
  47. Stewart V. . ( 2003;). Biochemical Society Special Lecture. Nitrate- and nitrite-responsive sensors NarX and NarQ of proteobacteria. Biochem Soc Trans 31: 1–10 [CrossRef] [PubMed].
    [Google Scholar]
  48. Stewart V. , Chen L.L. . ( 2010;). The shelix mediates signal transmission as a HAMP domain coiled-coil extension in the NarX nitrate sensor from Escherichia coli K-12. J Bacteriol 192: 734–745 [CrossRef] [PubMed].
    [Google Scholar]
  49. Stewart V. , Parales J. Jr . ( 1988;). Identification and expression of genes narL narX of the nar (nitrate reductase) locus in Escherichia coli K-12. J Bacteriol 170: 1589–1597 [PubMed].
    [Google Scholar]
  50. Stewart V. , Rabin R.S. . ( 1995;). Dual sensors and dual response regulators interact to control nitrate- and nitrite-responsive gene expression in Escherichia coli . . In Two-component Signal Transduction, pp. 233–252. Edited by Hoch J. A. , Silhavy T. J. . Washington, DC: American Society for Microbiology;.[CrossRef]
    [Google Scholar]
  51. Stewart G.S. , Lubinsky-Mink S. , Jackson C.G. , Cassel A. , Kuhn J. . ( 1986;). pHG165: a pBR322 copy number derivative of pUC8 for cloning and expression. Plasmid 15: 172–181 [CrossRef] [PubMed].
    [Google Scholar]
  52. Stewart V. , Chen L.-L. , Wu H.C. . ( 2003;). Response to culture aeration mediated by the nitrate and nitrite sensor NarQ of Escherichia coli K-12. Mol Microbiol 50: 1391–1399 [CrossRef] [PubMed].
    [Google Scholar]
  53. Stewart V. , Bledsoe P.J. , Chen L.L. , Cai A. . ( 2009;). Catabolite repression control of napF (periplasmic nitrate reductase) operon expression in Escherichia coli K-12. J Bacteriol 191: 996–1005 [CrossRef] [PubMed].
    [Google Scholar]
  54. Stynen B. , Tournu H. , Tavernier J. , Van Dijck P. . ( 2012;). Diversity in genetic in vivo methods for protein-protein interaction studies: from the yeast two-hybrid system to the mammalian split-luciferase system. Microbiol Mol Biol Rev 76: 331–382 [CrossRef] [PubMed].
    [Google Scholar]
  55. Swanson R.V. , Bourret R.B. , Simon M.I. . ( 1993;). Intermolecular complementation of the kinase activity of CheA. Mol Microbiol 8: 435–441 [CrossRef] [PubMed].
    [Google Scholar]
  56. Trajtenberg F. , Graña M. , Ruétalo N. , Botti H. , Buschiazzo A. . ( 2010;). Structural and enzymatic insights into the ATP binding and autophosphorylation mechanism of a sensor histidine kinase. J Biol Chem 285: 24892–24903 [CrossRef] [PubMed].
    [Google Scholar]
  57. Wanner B.L. , Kodaira R. , Neidhardt F.C. . ( 1978;). Regulation of lac operon expression: reappraisal of the theory of catabolite repression. J Bacteriol 136: 947–954 [PubMed].
    [Google Scholar]
  58. Wayne K.J. , Sham L.T. , Tsui H.C. , Gutu A.D. , Barendt S.M. , Keen S.K. , Winkler M.E. . ( 2010;). Localization and cellular amounts of the WalRKJ (VicRKX) two-component regulatory system proteins in serotype 2 Streptococcus pneumoniae . J Bacteriol 192: 4388–4394 [CrossRef] [PubMed].
    [Google Scholar]
  59. Williams S.B. , Stewart V. . ( 1997a;). Nitrate- and nitrite-sensing protein NarX of Escherichia coli K-12: mutational analysis of the amino-terminal tail and first transmembrane segment. J Bacteriol 179: 721–729 [PubMed].
    [Google Scholar]
  60. Williams S.B. , Stewart V. . ( 1997b;). Discrimination between structurally related ligands nitrate and nitrite controls autokinase activity of the NarX transmembrane signal transducer of Escherichia coli K-12. Mol Microbiol 26: 911–925 [CrossRef] [PubMed].
    [Google Scholar]
  61. Yang Y. , Inouye M. . ( 1991;). Intermolecular complementation between two defective mutant signal-transducing receptors of Escherichia coli . Proc Natl Acad Sci U S A 88: 11057–11061 [CrossRef] [PubMed].
    [Google Scholar]
  62. Yanofsky C. , Horn V. , Bonner M. , Stasiowski S. . ( 1971;). Polarity and enzyme functions in mutants of the first three genes of the tryptophan operon of Escherichia coli . Genetics 69: 409–433 [PubMed].
    [Google Scholar]
  63. You C. , Okano H. , Hui S. , Zhang Z. , Kim M. , Gunderson C.W. , Wang Y.P. , Lenz P. , Yan D. , Hwa T. . ( 2013;). Coordination of bacterial proteome with metabolism by cyclic AMP signalling. Nature 500: 301–306 [CrossRef] [PubMed].
    [Google Scholar]
  64. Zhang J.H. , Xiao G. , Gunsalus R.P. , Hubbell W.L. . ( 2003;). Phosphorylation triggers domain separation in the DNA binding response regulator NarL. Biochemistry 42: 2552–2559 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000092
Loading
/content/journal/micro/10.1099/mic.0.000092
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error