1887

Abstract

The NrtA and NrtB nitrate transporters are paralogous members of the major facilitator superfamily in . The availability of loss-of-function mutations allowed individual investigation of the specificity and inhibitor sensitivity of both NrtA and NrtB. In this study, growth response tests were carried out at a growth-limiting concentration of nitrate (1 mM) as the sole nitrogen source, in the presence of a number of potential nitrate analogues at various concentrations, to evaluate their effect on nitrate transport. Both chlorate and chlorite inhibited fungal growth, with chlorite exerting the greater inhibition. The main transporter of nitrate, NrtA, proved to be more sensitive to chlorate than the minor transporter, NrtB. Similarly, the cation caesium was shown to exert differential effects, strongly inhibiting the activity of NrtB, but not NrtA. In contrast, no inhibition of nitrate uptake by NrtA or NrtB transporters was observed in either growth tests or uptake assays in the presence of bicarbonate, formate, malonate or oxalate (sulphite could not be tested in uptake assays owing to its reaction with nitrate), indicating significant specificity of nitrate transport. Kinetic analyses of nitrate uptake revealed that both chlorate and chlorite inhibited NrtA competitively, while these same inhibitors inhibited NrtB in a non-competitive fashion. The caesium ion appeared to inhibit NrtA in a non-competitive fashion, while NrtB was inhibited uncompetitively. The results provide further evidence of the distinctly different characteristics as well as the high specificity of nitrate uptake by these two transporters.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000088
2015-07-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/7/1435.html?itemId=/content/journal/micro/10.1099/mic.0.000088&mimeType=html&fmt=ahah

References

  1. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J.. ( 1990;). Basic local alignment search tool. J Mol Biol 215: 403–410 [CrossRef] [PubMed].
    [Google Scholar]
  2. Avery S.V.. ( 1995;). Caesium accumulation by micro-organisms: uptake mechanisms, cation competition, compartmentalization and toxicity. J Ind Microbiol 14: 76–84 [CrossRef] [PubMed].
    [Google Scholar]
  3. Baxter I., Hosmani P.S., Rus A., Lahner B., Borevitz J.O., Muthukumar B., Mickelbart M.V., Schreiber L., Franke R.B., Salt D.E.. ( 2009;). Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5: e1000492 [CrossRef] [PubMed].
    [Google Scholar]
  4. Boyd J., Gradmann D., Boyd C.M.. ( 2003;). Transinhibition and voltage-gating in a fungal nitrate transporter. J Membr Biol 195: 109–120 [CrossRef] [PubMed].
    [Google Scholar]
  5. Brownlee A.G., Arst H.N. Jr. ( 1983;). Nitrate uptake in Aspergillus nidulans and involvement of the third gene of the nitrate assimilation gene cluster. J Bacteriol 155: 1138–1146 [PubMed].
    [Google Scholar]
  6. Cabrera E., González-Montelongo R., Giraldez T., de la Rosa D.A., Siverio J.M.. ( 2014;). Molecular components of nitrate and nitrite efflux in yeast. Eukaryot Cell 13: 267–278 [CrossRef] [PubMed].
    [Google Scholar]
  7. Cove D.J.. ( 1976;). Chlorate toxicity in Aspergillus nidulans: the selection and characterisation of chlorate resistant mutants. Heredity (Edinb) 36: 191–203 [CrossRef] [PubMed].
    [Google Scholar]
  8. Downey R.J., Gedeon C.A.. ( 1994;). Evidence for a H+ nitrate symporter in Aspergillus nidulans. Microbios 78: 35–46 [PubMed].
    [Google Scholar]
  9. Enstone D.E., Peterson C.A., Ma F.. ( 2002;). Root endodermis and exodermis, structure, function, and responses to the environment. J Plant Growth Regul 21: 335–351 [CrossRef].
    [Google Scholar]
  10. Forde B.G.. ( 2000;). Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465: 219–235 [CrossRef] [PubMed].
    [Google Scholar]
  11. Gao-Rubinelli F., Marzluf G.A.. ( 2004;). Identification and characterization of a nitrate transporter gene in Neurospora crassa. Biochem Genet 42: 21–34 [CrossRef] [PubMed].
    [Google Scholar]
  12. Hampton C.R., Bowen H.C., Broadley M.R., Hammond J.P., Mead A., Payne K.A., Pritchard J., White P.J.. ( 2004;). Cesium toxicity in Arabidopsis. Plant Physiol 136: 3824–3837 [CrossRef] [PubMed].
    [Google Scholar]
  13. Kinghorn J.R., Sloan J., Kana'n G.J.M., Dasilva E.R., Rouch D.A., Unkles S.E.. ( 2005;). Missense mutations that inactivate the Aspergillus nidulans nrtA gene encoding a high-affinity nitrate transporter. Genetics 169: 1369–1377 [CrossRef] [PubMed].
    [Google Scholar]
  14. Kosola K.R., Bloom A.J.. ( 1996;). Chlorate as a transport analog for nitrate absorption by roots of tomato. Plant Physiol 110: 1293–1299 [PubMed].
    [Google Scholar]
  15. LaBrie S.T., Wilkinson J.Q., Crawford N.M.. ( 1991;). Effect of chlorate treatment on nitrate reductase and nitrite reductase gene expression in Arabidopsis thaliana. Plant Physiol 97: 873–879 [CrossRef] [PubMed].
    [Google Scholar]
  16. Léchenne B., Reichard U., Zaugg C., Fratti M., Kunert J., Boulat O., Monod M.. ( 2007;). Sulphite efflux pumps in Aspergillus fumigatus and dermatophytes. Microbiology 153: 905–913 [CrossRef] [PubMed].
    [Google Scholar]
  17. McDonald D.W., Coddington A.. ( 1974;). Properties of the assimilatory nitrate reductase from Aspergillus nidulans. Eur J Biochem 46: 169–178 [CrossRef] [PubMed].
    [Google Scholar]
  18. Okamoto M., Vidmar J.J., Glass A.D.M.. ( 2003;). Regulation of NRT1 NRT2 gene families of Arabidopsis thaliana: responses to nitrate provision. Plant Cell Physiol 44: 304–317 [CrossRef] [PubMed].
    [Google Scholar]
  19. Orsel M., Chopin F., Leleu O., Smith S.J., Krapp A., Daniel-Vedele F., Miller A.J.. ( 2006;). Characterization of a two-component high-affinity nitrate uptake system in Arabidopsis. Physiology and protein-protein interaction. Plant Physiol 142: 1304–1317 [CrossRef] [PubMed].
    [Google Scholar]
  20. Pao S.S., Paulsen I.T., Saier M.H. Jr. ( 1998;). Major facilitator superfamily. Microbiol Mol Biol Rev 62: 1–34 [PubMed].
    [Google Scholar]
  21. Parker J.L., Newstead S.. ( 2014;). Molecular basis of nitrate uptake by the plant nitrate transporter NRT1.1. Nature 507: 68–72 [CrossRef] [PubMed].
    [Google Scholar]
  22. Siddiqi M.Y., King B.J., Glass A.D.M.. ( 1992;). Effects of nitrite, chlorate, and chlorite on nitrate uptake and nitrate reductase activity. Plant Physiol 100: 644–650 [CrossRef] [PubMed].
    [Google Scholar]
  23. Sun J., Bankston J.R., Payandeh J., Hinds T.R., Zagotta W.N., Zheng N.. ( 2014;). Crystal structure of the plant dual-affinity nitrate transporter NRT1.1. Nature 507: 73–77 [CrossRef] [PubMed].
    [Google Scholar]
  24. Trueman L.J., Richardson A., Forde B.G.. ( 1996;). Molecular cloning of higher plant homologues of the high-affinity nitrate transporters of Chlamydomonas reinhardtii Aspergillus nidulans. Gene 175: 223–231 [CrossRef] [PubMed].
    [Google Scholar]
  25. Unkles S.E., Hawker K.L., Grieve C., Campbell E.I., Montague P., Kinghorn J.R.. ( 1991;). crnA encodes a nitrate transporter in Aspergillus nidulans. Proc Natl Acad Sci U S A 88: 204–208 [CrossRef] [PubMed].
    [Google Scholar]
  26. Unkles S.E., Zhou D., Siddiqi M.Y., Kinghorn J.R., Glass A.D.M.. ( 2001;). Apparent genetic redundancy facilitates ecological plasticity for nitrate transport. EMBO J 20: 6246–6255 [CrossRef] [PubMed].
    [Google Scholar]
  27. Unkles S.E., Rouch D.A., Wang Y., Siddiqi M.Y., Glass A.D.M., Kinghorn J.R.. ( 2004;). Two perfectly conserved arginine residues are required for substrate binding in a high-affinity nitrate transporter. Proc Natl Acad Sci U S A 101: 17549–17554 [CrossRef] [PubMed].
    [Google Scholar]
  28. Unkles S.E., Symington V.F., Kotur Z., Wang Y., Siddiqi M.Y., Kinghorn J.R., Glass A.D.M.. ( 2011;). Physiological and biochemical characterization of AnNitA, the Aspergillus nidulans high-affinity nitrite transporter. Eukaryot Cell 10: 1724–1732 [CrossRef] [PubMed].
    [Google Scholar]
  29. Unkles S.E., Karabika E., Symington V.F., Cecile J.L., Rouch D.A., Akhtar N., Cromer B.A., Kinghorn J.R.. ( 2012;). Alanine scanning mutagenesis of a high-affinity nitrate transporter highlights the requirement for glycine and asparagine residues in the two nitrate signature motifs. Biochem J 447: 35–42 [CrossRef] [PubMed].
    [Google Scholar]
  30. Wang Y., Li W., Siddiqi Y., Kinghorn J.R., Unkles S.E., Glass A.D.M.. ( 2007;). Evidence for post-translational regulation of NrtA, the Aspergillus nidulans high-affinity nitrate transporter. New Phytol 175: 699–706 [CrossRef] [PubMed].
    [Google Scholar]
  31. Wang Y., Li W., Siddiqi Y., Symington V.F., Kinghorn J.R., Unkles S.E., Glass A.D.M.. ( 2008;). Nitrite transport is mediated by the nitrite-specific high-affinity NitA transporter and by nitrate transporters NrtA. NrtB in Aspergillus nidulans. Fungal Genet Biol 45: 94–102 [CrossRef] [PubMed].
    [Google Scholar]
  32. White P.J., Broadley M.R.. ( 2000;). Mechanisms of caesium uptake by plants. New Phytol 147: 241–256 [CrossRef].
    [Google Scholar]
  33. Yan H., Huang W., Yan C., Gong X., Jiang S., Zhao Y., Wang J., Shi Y.. ( 2013;). Structure and mechanism of a nitrate transporter. Cell Reports 3: 716–723 [CrossRef] [PubMed].
    [Google Scholar]
  34. Zheng H., Wisedchaisri G., Gonen T.. ( 2013;). Crystal structure of a nitrate/nitrite exchanger. Nature 497: 647–651 [CrossRef] [PubMed].
    [Google Scholar]
  35. Zhou J.J., Trueman L.J., Boorer K.J., Theodoulou F.L., Forde B.G., Miller A.J.. ( 2000;). A high affinity fungal nitrate carrier with two transport mechanisms. J Biol Chem 275: 39894–39899 [CrossRef] [PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000088
Loading
/content/journal/micro/10.1099/mic.0.000088
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error