Editor's Choice Role of the PhoP–PhoQ gene regulatory system in adaptation of to environmental stress in the flea digestive tract Open Access

Abstract

The PhoPQ gene regulatory system is induced during infection of the flea digestive tract and is required to produce adherent biofilm in the foregut, which greatly enhances bacterial transmission during a flea bite. To understand the context of PhoPQ induction and to determine PhoP-regulated targets in the flea, we undertook whole-genome comparative transcriptional profiling of WT and Δ strains isolated from infected fleas and from temperature-matched planktonic and flow-cell biofilm cultures. In the absence of PhoP regulation, the gene expression program indicated that the bacteria experienced diverse physiological stresses and were in a metabolically less active state. Multiple stress response genes, including several toxin–antitoxin loci and YhcN family genes responsible for increased acid tolerance, were upregulated in the mutant during flea infection. The data implied that PhoPQ was induced by low pH in the flea gut, and that PhoP modulated physiological adaptation to acid and other stresses encountered during infection of the flea. This adaptive response, together with PhoP-dependent modification of the bacterial outer surface that includes repression of pH 6 antigen fimbriae, supports stable biofilm development in the flea foregut.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000082
2015-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/6/1198.html?itemId=/content/journal/micro/10.1099/mic.0.000082&mimeType=html&fmt=ahah

References

  1. Albrethsen J., Agner J., Piersma S. R., Højrup P., Pham T. V., Weldingh K., Jimenez C. R., Andersen P., Rosenkrands I. (2013). Proteomic profiling of Mycobacterium tuberculosis identifies nutrient-starvation-responsive toxin–antitoxin systems. Mol Cell Proteomics 12, 11801191, [View Article][PubMed]. [Google Scholar]
  2. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I. (2005). Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122, 461472, [View Article][PubMed]. [Google Scholar]
  3. Bearson B. L., Wilson L., Foster J. W. (1998). A low pH-inducible, PhoPQ-dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress. J Bacteriol 180, 24092417, [PubMed]. [Google Scholar]
  4. Bozue J., Mou S., Moody K. L., Cote C. K., Trevino S., Fritz D., Worsham P. (2011). The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis . Microb Pathog 50, 314321, [View Article][PubMed]. [Google Scholar]
  5. Burroughs A. L. (1947). Sylvatic plague studies: the vector efficiency of nine species of fleas compared with Xenopsylla cheopis . J Hyg (Lond) 45, 371396, [View Article][PubMed]. [Google Scholar]
  6. Buts L., Lah J., Dao-Thi M. H., Wyns L., Loris R. (2005). Toxin–antitoxin modules as bacterial metabolic stress managers. Trends Biochem Sci 30, 672679, [View Article][PubMed]. [Google Scholar]
  7. Cathelyn J. S., Crosby S. D., Lathem W. W., Goldman W. E., Miller V. L. (2006). RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci U S A 103, 1351413519, [View Article][PubMed]. [Google Scholar]
  8. Choi E., Groisman E. A., Shin D. (2009). Activated by different signals, the PhoP/PhoQ two-component system differentially regulates metal uptake. J Bacteriol 191, 71747181, [View Article][PubMed]. [Google Scholar]
  9. Christensen S. K., Mikkelsen M., Pedersen K., Gerdes K. (2001). RelE, a global inhibitor of translation, is activated during nutritional stress. Proc Natl Acad Sci U S A 98, 1432814333, [View Article][PubMed]. [Google Scholar]
  10. Christensen-Dalsgaard M., Jørgensen M. G., Gerdes K. (2010). Three new RelE-homologous mRNA interferases of Escherichia coli differentially induced by environmental stresses. Mol Microbiol 75, 333348, [View Article][PubMed]. [Google Scholar]
  11. Datsenko K. A., Wanner B. L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 66406645, [View Article][PubMed]. [Google Scholar]
  12. Derbise A., Lesic B., Dacheux D., Ghigo J. M., Carniel E. (2003). A rapid and simple method for inactivating chromosomal genes in Yersinia . FEMS Immunol Med Microbiol 38, 113116, [View Article][PubMed]. [Google Scholar]
  13. Dimopoulos G., Richman A., Müller H.-M., Kafatos F. C. (1997). Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc Natl Acad Sci U S A 94, 1150811513, [View Article][PubMed]. [Google Scholar]
  14. Foster J. W., Hall H. K. (1990). Adaptive acidification tolerance response of Salmonella typhimurium . J Bacteriol 172, 771778, [PubMed]. [Google Scholar]
  15. García Véscovi E., Soncini F. C., Groisman E. A. (1996). Mg2+ as an extracellular signal: environmental regulation of Salmonella virulence. Cell 84, 165174, [View Article][PubMed]. [Google Scholar]
  16. Gerdes K., Maisonneuve E. (2012). Bacterial persistence and toxin–antitoxin loci. Annu Rev Microbiol 66, 103123, [View Article][PubMed]. [Google Scholar]
  17. Gerdes K., Christensen S. K., Løbner-Olesen A. (2005). Prokaryotic toxin–antitoxin stress response loci. Nat Rev Microbiol 3, 371382, [View Article][PubMed]. [Google Scholar]
  18. Goulard C., Langrand S., Carniel E., Chauvaux S. (2010). The Yersinia pestis chromosome encodes active addiction toxins. J Bacteriol 192, 36693677, [View Article][PubMed]. [Google Scholar]
  19. Grabenstein J. P., Fukuto H. S., Palmer L. E., Bliska J. B. (2006). Characterization of phagosome trafficking and identification of PhoP-regulated genes important for survival of Yersinia pestis in macrophages. Infect Immun 74, 37273741, [View Article][PubMed]. [Google Scholar]
  20. Groisman E. A. (2001). The pleiotropic two-component regulatory system PhoP–PhoQ. J Bacteriol 183, 18351842, [View Article][PubMed]. [Google Scholar]
  21. Gunn J. S., Ryan S. S., Van Velkinburgh S. S., Ernst J. C., Ernst R. K., Miller S. I. (2000). Genetic and functional analysis of a PmrA–PmrB-regulated locus necessary for lipopolysaccharide modification, antimicrobial peptide resistance, and oral virulence of Salmonella enterica serovar typhimurium. Infect Immun 68, 61396146, [View Article][PubMed]. [Google Scholar]
  22. Guo L., Lim K. B., Poduje C. M., Daniel M., Gunn J. S., Hackett M., Miller S. I. (1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95, 189198, [View Article][PubMed]. [Google Scholar]
  23. Han Y., Zhou D., Pang X., Zhang L., Song Y., Tong Z., Bao J., Dai E., Wang J., other authors. (2005). Comparative transcriptome analysis of Yersinia pestis in response to hyperosmotic and high-salinity stress. Res Microbiol 156, 403415, [View Article][PubMed]. [Google Scholar]
  24. Han Y., Qiu J., Guo Z., Gao H., Song Y., Zhou D., Yang R. (2007). Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression. BMC Microbiol 7, 96, [View Article][PubMed]. [Google Scholar]
  25. Hancock V., Klemm P. (2007). Global gene expression profiling of asymptomatic bacteriuria Escherichia coli during biofilm growth in human urine. Infect Immun 75, 966976, [View Article][PubMed]. [Google Scholar]
  26. Hancock V., Vejborg R. M., Klemm P. (2010). Functional genomics of probiotic Escherichia coli Nissle 1917 and 83972, and UPEC strain CFT073: comparison of transcriptomes, growth and biofilm formation. Mol Genet Genomics 284, 437454, [View Article][PubMed]. [Google Scholar]
  27. Harari O., Park S.-Y., Huang H., Groisman E. A., Zwir I. (2010). Defining the plasticity of transcription factor binding sites by deconstructing DNA consensus sequences: the PhoP-binding sites among gamma/enterobacteria. PLoS Comput Biol 6, e1000862, [View Article][PubMed]. [Google Scholar]
  28. Hayes F. (2003). Toxins–antitoxins: plasmid maintenance, programmed cell death, and cell cycle arrest. Science 301, 14961499, [View Article][PubMed]. [Google Scholar]
  29. Hinnebusch B. J., Erickson D. L. (2008). Yersinia pestis biofilm in the flea vector and its role in the transmission of plague. Curr Top Microbiol Immunol 322, 229248, [PubMed]. [Google Scholar]
  30. Hinnebusch B. J., Perry R. D., Schwan T. G. (1996). Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science 273, 367370, [View Article][PubMed]. [Google Scholar]
  31. Hinnebusch B. J., Rudolph A. E., Cherepanov P., Dixon J. E., Schwan T. G., Forsberg A. (2002). Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science 296, 733735, [View Article][PubMed]. [Google Scholar]
  32. Hinnebusch B. J., Sebbane F., Vadyvaloo V. (2012). Transcriptional profiling of the Yersinia pestis life cycle. In Yersinia: Systems Biology and Control, pp. 118. Edited by Carniel E., Hinnebusch B. J. . Norwich: Caister Academic Press. [Google Scholar]
  33. Jarrett C. O., Deak E., Isherwood K. E., Oyston P. C., Fischer E. R., Whitney A. R., Kobayashi S. D., DeLeo F. R., Hinnebusch B. J. (2004). Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis 190, 783792, [View Article][PubMed]. [Google Scholar]
  34. Jiang Y., Pogliano J., Helinski D. R., Konieczny I. (2002). ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase. Mol Microbiol 44, 971979, [View Article][PubMed]. [Google Scholar]
  35. Landini P. (2009). Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli . Res Microbiol 160, 259266, [View Article][PubMed]. [Google Scholar]
  36. Lee J., Hiibel S. R., Reardon K. F., Wood T. K. (2010). Identification of stress-related proteins in Escherichia coli using the pollutant cis-dichloroethylene. J Appl Microbiol 108, 20882102, [PubMed].[CrossRef] [Google Scholar]
  37. Lehane M. J., Wu D., Lehane S. M. (1997). Midgut-specific immune molecules are produced by the blood-sucking insect Stomoxys calcitrans . Proc Natl Acad Sci U S A 94, 1150211507, [View Article][PubMed]. [Google Scholar]
  38. Lewis K. (2010). Persister cells. Annu Rev Microbiol 64, 357372, [View Article][PubMed]. [Google Scholar]
  39. Li Y., Gao H., Qin L., Li B., Han Y., Guo Z., Song Y., Zhai J., Du Z., other authors. (2008). Identification and characterization of PhoP regulon members in Yersinia pestis biovar Microtus. BMC Genomics 9, 143, [View Article][PubMed]. [Google Scholar]
  40. Lindler L. E., Tall B. D. (1993). Yersinia pestis pH 6 antigen forms fimbriae and is induced by intracellular association with macrophages. Mol Microbiol 8, 311324, [View Article][PubMed]. [Google Scholar]
  41. Lindler L. E., Klempner M. S., Straley S. C. (1990). Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun 58, 25692577, [PubMed]. [Google Scholar]
  42. Miyashiro T., Goulian M. (2007). Stimulus-dependent differential regulation in the Escherichia coli PhoQ–PhoP system. Proc Natl Acad Sci U S A 104, 1630516310, [View Article][PubMed]. [Google Scholar]
  43. Ni B., Zhang Y., Huang X., Yang R., Zhou D. (2014). Transcriptional regulation mechanism of ter operon by OxyR in Yersinia pestis . Curr Microbiol 69, 4246, [View Article][PubMed]. [Google Scholar]
  44. O'Loughlin J. L., Spinner J. L., Minnich S. A., Kobayashi S. D. (2010). Yersinia pestis two-component gene regulatory systems promote survival in human neutrophils. Infect Immun 78, 773782, [View Article][PubMed]. [Google Scholar]
  45. Oyston P. C. F., Dorrell N., Williams K., Li S.-R., Green M., Titball R. W., Wren B. W. (2000). The response regulator PhoP is important for survival under conditions of macrophage-induced stress and virulence in Yersinia pestis . Infect Immun 68, 34193425, [View Article][PubMed]. [Google Scholar]
  46. Perez J. C., Groisman E. A. (2009). Transcription factor function and promoter architecture govern the evolution of bacterial regulons. Proc Natl Acad Sci U S A 106, 43194324, [View Article][PubMed]. [Google Scholar]
  47. Perez J. C., Shin D., Zwir I., Latifi T., Hadley T. J., Groisman E. A. (2009). Evolution of a bacterial regulon controlling virulence and Mg2+ homeostasis. PLoS Genet 5, e1000428, [View Article][PubMed]. [Google Scholar]
  48. Perry R. D., Fetherston J. D. (1997). Yersinia pestis – etiologic agent of plague. Clin Microbiol Rev 10, 3566. [Google Scholar]
  49. Prost L. R., Daley M. E., Le Sage V., Bader M. W., Le Moual H., Klevit R. E., Miller S. I. (2007). Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell 26, 165174, [View Article][PubMed]. [Google Scholar]
  50. Ramage H. R., Connolly L. E., Cox J. S. (2009). Comprehensive functional analysis of Mycobacterium tuberculosis toxin–antitoxin systems: implications for pathogenesis, stress responses, and evolution. PLoS Genet 5, e1000767, [View Article][PubMed]. [Google Scholar]
  51. Rebeil R., Ernst R. K., Gowen B. B., Miller S. I., Hinnebusch B. J. (2004). Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 52, 13631373, [View Article][PubMed]. [Google Scholar]
  52. Rebeil R., Jarrett C. O., Driver J. D., Ernst R. K., Oyston P. C., Hinnebusch B. J. (2013). Induction of the Yersinia pestis PhoP–PhoQ regulatory system in the flea and its role in producing a transmissible infection. J Bacteriol 195, 19201930, [View Article][PubMed]. [Google Scholar]
  53. Rudd K. E., Humphery-Smith I., Wasinger V. C., Bairoch A. (1998). Low molecular weight proteins: a challenge for post-genomic research. Electrophoresis 19, 536544, [View Article][PubMed]. [Google Scholar]
  54. Spinner J. L., Jarrett C. O., LaRock D. L., Miller S. I., Collins C. M., Hinnebusch B. J. (2012). Yersinia pestis insecticidal-like toxin complex (Tc) family proteins: characterization of expression, subcellular localization, and potential role in infection of the flea vector. BMC Microbiol 12, 296, [View Article][PubMed]. [Google Scholar]
  55. Sun Y.-C., Hinnebusch B. J., Darby C. (2008). Experimental evidence for negative selection in the evolution of a Yersinia pestis pseudogene. Proc Natl Acad Sci U S A 105, 80978101, [View Article][PubMed]. [Google Scholar]
  56. Sun Y.-C., Koumoutsi A., Darby C. (2009). The response regulator PhoP negatively regulates Yersinia pseudotuberculosis and Yersinia pestis biofilms. FEMS Microbiol Lett 290, 8590, [View Article][PubMed]. [Google Scholar]
  57. Sun Y. C., Guo X. P., Hinnebusch B. J., Darby C. (2012). The Yersinia pestis Rcs phosphorelay inhibits biofilm formation by repressing transcription of the diguanylate cyclase gene hmsT . J Bacteriol 194, 20202026, [View Article][PubMed]. [Google Scholar]
  58. Sun Y.-C., Jarrett C. O., Bosio C. F., Hinnebusch B. J. (2014). Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis . Cell Host Microbe 15, 578586, [View Article][PubMed]. [Google Scholar]
  59. Vadyvaloo V., Jarrett C., Sturdevant D. E., Sebbane F., Hinnebusch B. J. (2010). Transit through the flea vector induces a pretransmission innate immunity resistance phenotype in Yersinia pestis . PLoS Pathog 6, e1000783, [View Article][PubMed]. [Google Scholar]
  60. Wang X., Wood T. K. (2011). Toxin–antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl Environ Microbiol 77, 55775583, [View Article][PubMed]. [Google Scholar]
  61. Weber M. M., French C. L., Barnes M. B., Siegele D. A., McLean R. J. (2010). A previously uncharacterized gene, yjfO (bsmA), influences Escherichia coli biofilm formation and stress response. Microbiology 156, 139147, [View Article][PubMed]. [Google Scholar]
  62. Whelan K. F., Colleran E., Taylor D. E. (1995). Phage inhibition, colicin resistance, and tellurite resistance are encoded by a single cluster of genes on the IncHI2 plasmid R478. J Bacteriol 177, 50165027, [PubMed]. [Google Scholar]
  63. Wimsatt J., Biggins D. E. (2009). A review of plague persistence with special emphasis on fleas. J Vector Borne Dis 46, 8599, [PubMed]. [Google Scholar]
  64. Winfield M. D., Latifi T., Groisman E. A. (2005). Transcriptional regulation of the 4-amino-4-deoxy-l-arabinose biosynthetic genes in Yersinia pestis . J Biol Chem 280, 1476514772, [View Article][PubMed]. [Google Scholar]
  65. Yu J., Madsen M. L., Carruthers M. D., Phillips G. J., Kavanaugh J. S., Boyd J. M., Horswill A. R., Minion F. C. (2013). Analysis of autoinducer-2 quorum sensing in Yersinia pestis . Infect Immun 81, 40534062, [View Article][PubMed]. [Google Scholar]
  66. Zhang X. S., García-Contreras R., Wood T. K. (2007). YcfR (BhsA) influences Escherichia coli biofilm formation through stress response and surface hydrophobicity. J Bacteriol 189, 30513062, [View Article][PubMed]. [Google Scholar]
  67. Zhang X. S., García-Contreras R., Wood T. K. (2008). Escherichia coli transcription factor YncC (McbR) regulates colanic acid and biofilm formation by repressing expression of periplasmic protein YbiM (McbA). ISME J 2, 615631, [View Article][PubMed]. [Google Scholar]
  68. Zhang Y., Gao H., Wang L., Xiao X., Tan Y., Guo Z., Zhou D., Yang R. (2011). Molecular characterization of transcriptional regulation of rovA by PhoP and RovA in Yersinia pestis . PLoS One 6, e25484, [View Article][PubMed]. [Google Scholar]
  69. Zhang Y., Wang L., Fang N., Qu S., Tan Y., Guo Z., Qiu J., Zhou D., Yang R. (2013). Reciprocal regulation of pH 6 antigen gene loci by PhoP and RovA in Yersinia pestis biovar Microtus. Future Microbiol 8, 271280, [View Article][PubMed]. [Google Scholar]
  70. Zhou D., Han Y., Qin L., Chen Z., Qiu J., Song Y., Li B., Wang J., Guo Z., other authors. (2005). Transcriptome analysis of the Mg2+ responsive PhoP regulator in Yersinia pestis . FEMS Microbiol Lett 250, 8595, [View Article][PubMed]. [Google Scholar]
  71. Zhou D., Han Y., Qiu J., Qin L., Guo Z., Wang X., Song Y., Tan Y., Du Z., Yang R. (2006). Genome-wide transcriptional response of Yersinia pestis to stressful conditions simulating phagolysosomal environments. Microbes Infect 8, 26692678, [View Article][PubMed]. [Google Scholar]
  72. Zhou W., Russell C. W., Johnson K. L., Mortensen R. D., Erickson D. L. (2012). Gene expression analysis of Xenopsylla cheopis (Siphonaptera: Pulicidae) suggests a role for reactive oxygen species in response to Yersinia pestis infection. J Med Entomol 49, 364370, [View Article][PubMed]. [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000082
Loading
/content/journal/micro/10.1099/mic.0.000082
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF

Most cited Most Cited RSS feed