1887

Abstract

mutants lacking both isoforms of the main plasma membrane potassium transporter display impaired potassium transport and defective growth at limiting concentrations of the cation. Moreover, they are hyperpolarized and have a lower intracellular pH than wild-type. In order to unravel global physiological processes altered in mutants, we have established conditions at which both wild-type and mutants can grow at different rates. Using a combination of physiological, biochemical and proteomic approaches, we show that during growth at suboptimal potassium concentrations, double mutants accumulate less potassium and reach lower yields. In contrast, the mutants maintain increased viability in the stationary phase and retain more potassium. Moreover, the mutants show increased expression of stress-related proteins such as catalase T, thioredoxin peroxidase or hexokinase 2, suggesting that they are better adapted to the additional stress factors associated with entry into stationary growth phase.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000078
2015-06-01
2024-12-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/6/1260.html?itemId=/content/journal/micro/10.1099/mic.0.000078&mimeType=html&fmt=ahah

References

  1. Amigoni L., Martegani E., Colombo S. (2013). Lack of HXK2 induces localization of active Ras in mitochondria and triggers apoptosis in the yeast Saccharomyces cerevisiae . Oxid Med Cell Longev 2013, 678473. [Google Scholar]
  2. Ariño J., Ramos J., Sychrová H. (2010). Alkali metal cation transport and homeostasis in yeasts. Microbiol Mol Biol Rev 74, 95120.[CrossRef] [Google Scholar]
  3. Ariño J., Aydar E., Drulhe S., Ganser D., Jorrín J., Kahm M., Krause F., Petrezsélyová S., Yenush L., other authors. (2014). Systems biology of monovalent cation homeostasis in yeast: the translucent contribution. Adv Microb Physiol 64, 163.[CrossRef] [Google Scholar]
  4. Bertl A., Ramos J., Ludwig J., Lichtenberg-Fraté H., Reid J., Bihler H., Calero F., Martínez P., Ljungdahl P. O. (2003). Characterization of potassium transport in wild-type and isogenic yeast strains carrying all combinations of trk1, trk2 and tok1 null mutations. Mol Microbiol 47, 767780.[CrossRef] [Google Scholar]
  5. Bihler H., Slayman C. L., Bertl A. (2002). Low-affinity potassium uptake by Saccharomyces cerevisiae is mediated by NSC1, a calcium-blocked non-specific cation channel. Biochim Biophys Acta 1558, 109118.[CrossRef] [Google Scholar]
  6. Bradford M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.[CrossRef] [Google Scholar]
  7. Brumbarova T., Matros A., Mock H. P., Bauer P. (2008). A proteomic study showing differential regulation of stress, redox regulation and peroxidase proteins by iron supply and the transcription factor FER. Plant J 54, 321334.[CrossRef] [Google Scholar]
  8. Curto M., Valledor L., Navarrete C., Gutiérrez D., Sychrova H., Ramos J. (2010). 2-DE based proteomic analysis of Saccharomyces cerevisiae wild and K+ transport-affected mutant (trk1,2) strains at the growth exponential and stationary phases. J Proteomics 73, 23162335.[CrossRef] [Google Scholar]
  9. Gaber R. F., Styles C. A., Fink G. R. (1988). TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae . Mol Cell Biol 8, 28482859. [Google Scholar]
  10. Gelis S., Curto M., Valledor L., González A., Ariño J., Jorrín J., Ramos J. (2012). Adaptation to potassium starvation of wild-type and K+-transport mutant (trk1,2) of Saccharomyces cerevisiae: 2-dimensional gel electrophoresis-based proteomic approach. MicrobiologyOpen 1, 182193.[CrossRef] [Google Scholar]
  11. Görg A., Postel W., Günther S., Friedrich C. (1988). Horizontal two-dimensional electrophoresis with immobilized pH gradients using PhastSystem. Electrophoresis 9, 5759.[CrossRef] [Google Scholar]
  12. Herrera R., Álvarez M. C., Gelis S., Ramos J. (2013). Subcellular potassium and sodium distribution in Saccharomyces cerevisiae wild-type and vacuolar mutants. Biochem J 454, 525532.[CrossRef] [Google Scholar]
  13. Herrera R., Alvarez M. C., Gelis S., Kodedová M., Sychrová H., Kschischo M., Ramos J. (2014). Role of Saccharomyces cerevisiae Trk1 in stabilization of intracellular potassium content upon changes in external potassium levels. Biochim Biophys Acta 1838, 127133.[CrossRef] [Google Scholar]
  14. Herrero E., Ros J., Bellí G., Cabiscol E. (2008). Redox control and oxidative stress in yeast cells. Biochim Biophys Acta 1780, 12171235.[CrossRef] [Google Scholar]
  15. Kahm M., Navarrete C., Llopis-Torregrosa V., Herrera R., Barreto L., Yenush L., Ariño J., Ramos J., Kschischo M. (2012). Potassium starvation in yeast: mechanisms of homeostasis revealed by mathematical modeling. PLOS Comput Biol 8, e1002548.[CrossRef] [Google Scholar]
  16. Ke R., Ingram P. J., Haynes K. (2013). An integrative model of ion regulation in yeast. PLOS Comput Biol 9, e1002879.[CrossRef] [Google Scholar]
  17. Ko C. H., Gaber R. F. (1991). TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae . Mol Cell Biol 11, 42664273. [Google Scholar]
  18. Ko C. H., Buckley A. M., Gaber R. F. (1990). TRK2 is required for low affinity K+ transport in Saccharomyces cerevisiae . Genetics 125, 305312. [Google Scholar]
  19. Lauff D. B., Santa-María G. E. (2010). Potassium deprivation is sufficient to induce a cell death program in Saccharomyces cerevisiae . FEMS Yeast Res 10, 497507. [Google Scholar]
  20. Madrid R., Gómez M. J., Ramos J., Rodríguez-Navarro A. (1998). Ectopic potassium uptake in trk1 trk2 mutants of Saccharomyces cerevisiae correlates with a highly hyperpolarized membrane potential. J Biol Chem 273, 1483814844.[CrossRef] [Google Scholar]
  21. Mathesius U., Keijzers G., Natera S. H., Weinman J. J., Djordjevic M. A., Rolfe B. G. (2001). Establishment of a root proteome reference map for the model legume Medicago truncatula using the expressed sequence tag database for peptide mass fingerprinting. Proteomics 1, 14241440.[CrossRef] [Google Scholar]
  22. Navarrete C., Petrezsélyová S., Barreto L., Martínez J. L., Zahrádka J., Ariño J., Sychrová H., Ramos J. (2010). Lack of main K+ uptake systems in Saccharomyces cerevisiae cells affects yeast performance in both potassium-sufficient and potassium-limiting conditions. FEMS Yeast Res 10, 508517. [Google Scholar]
  23. Petrezselyova S., Zahradka J., Sychrova H. (2010). Saccharomyces cerevisiae BY4741 and W303-1A laboratory strains differ in salt tolerance. Fungal Biol 114, 144150.[CrossRef] [Google Scholar]
  24. Ramos J., Contreras P., Rodríguez-Navarro A. (1985). A potassium transport mutant of Saccharomyces cerevisiae . Arch Microbiol 143, 8893.[CrossRef] [Google Scholar]
  25. Ramos J., Haro R., Rodríguez-Navarro A. (1990). Regulation of potassium fluxes in Saccharomyces cerevisiae . Biochim Biophys Acta 1029, 211217.[CrossRef] [Google Scholar]
  26. Ramos J., Haro R., Alijo R., Rodríguez-Navarro A. (1992). Activation of the potassium uptake system during fermentation in Saccharomyces cerevisiae . J Bacteriol 174, 20252027. [Google Scholar]
  27. Sharov A. A., Dudekula D. B., Ko M. S. (2005). A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 21, 25482549.[CrossRef] [Google Scholar]
  28. Shevchenko A., Tomas H., Havliš J., Olsen J. V., Mann M. (2007). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1, 28562860.[CrossRef] [Google Scholar]
  29. Stefan C. P., Zhang N., Sokabe T., Rivetta A., Slayman C. L., Montell C., Cunningham K. W. (2013). Activation of an essential calcium signaling pathway in Saccharomyces cerevisiae by Kch1 and Kch2, putative low-affinity potassium transporters. Eukaryot Cell 12, 204214.[CrossRef] [Google Scholar]
  30. Valledor L., Jorrín J. (2011). Back to the basics: maximizing the information obtained by quantitative two dimensional gel electrophoresis analyses by an appropriate experimental design and statistical analyses. J Proteomics 74, 118.[CrossRef] [Google Scholar]
/content/journal/micro/10.1099/mic.0.000078
Loading
/content/journal/micro/10.1099/mic.0.000078
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error