growth medium is usually supplemented with horse serum (HS) or FCS. However, cyclodextrin derivatives or activated charcoal can replace serum. In this study, we purified self-growth-inhibiting (SGI) compounds from growth medium. The compounds were recovered from porous resin, Diaion HP-20, which was added to the growth medium instead of known supplements. These SGI compounds were also identified from 2,6-di--methyl-β-cyclodextrin, which was supplemented in a pleuropneumonia-like organisms broth. The growth-inhibiting compounds were identified as lauric acid (LA) and 7-()-tetradecenoic acid [7-()-TDA]. Although several fatty acids had been identified in , these specific compounds were not previously found in this species. However, we confirmed that these fatty acids were universally present in the cultivation medium of the strains examined in this study. A live/dead assay carried out without HS indicated that these compounds were bacteriostatic; however, no significant growth-inhibiting effect was observed against other tested bacterial species that constituted the indigenous bacterial flora. These findings suggested that LA and 7-()-TDA might play important roles in the survival of in human stomach epithelial cells.


Article metrics loading...

Loading full text...

Full text loading...



  1. Barber C. E., Tang J. L., Feng J. X., Pan M. Q., Wilson T. J. G., Slater H., Dow J. M., Williams P., Daniels M. J. (1997). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Mol Microbiol 24, 555566.[CrossRef] [Google Scholar]
  2. Batchelor J. G., Cronan J. E. Jr (1973). Occurrence of cis-7-tetradecenoic acid in the envelope phospholipids of Escherichia coli K12. Biochem Biophys Res Commun 52, 13741380.[CrossRef] [Google Scholar]
  3. Beaulieu E. D., Ionescu M., Chatterjee S., Yokota K., Trauner D., Lindow S. (2013). Characterization of a diffusible signaling factor from Xylella fastidiosa . MBio 4, e00539-12.[CrossRef] [Google Scholar]
  4. Brown L. M. (2000). Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 22, 283297.[CrossRef] [Google Scholar]
  5. Buck G. E., Smith J. S. (1987). Medium supplementation for growth of Campylobacter pyloridis. J Clin Microbiol 25, 597599. [Google Scholar]
  6. Cave D. R. (1997). How is Helicobacter pylori transmitted?Gastroenterology 113 (Suppl), S9S14.[CrossRef] [Google Scholar]
  7. Correia M., Michel V., Matos A. A., Carvalho P., Oliveira M. J., Ferreira R. M., Dillies M. -A., Huerre M., Seruca R., other authors. (2012). Docosahexaenoic acid inhibits Helicobacter pylori growth in vitro and mice gastric mucosa colonization. PLoS One 7, e35072.[CrossRef] [Google Scholar]
  8. Correia M., Michel V., Osório H., El Ghachi M., Bonis M., Boneca I. G., De Reuse H., Matos A. A., Lenormand P., other authors. (2013). Crosstalk between Helicobacter pylori and gastric epithelial cells is impaired by docosahexaenoic acid. PLoS One 8, e60657.[CrossRef] [Google Scholar]
  9. Correia M., Casal S., Vinagre J., Seruca R., Figueiredo C., Touati E., Machado J. C. (2014). Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid. Int J Med Microbiol 304, 314320.[CrossRef] [Google Scholar]
  10. Coudron P. E., Stratton C. W. (1995). Factors affecting growth and susceptibility testing of Helicobacter pylori in liquid media. J Clin Microbiol 33, 10281030. [Google Scholar]
  11. Edelstein P. H., Edelstein M. A. (1993). Comparison of three buffers used in the formulation of buffered charcoal yeast extract medium. J Clin Microbiol 31, 33293330. [Google Scholar]
  12. Ferrero R. L., Cussac V., Courcoux P., Labigne A. (1992). Construction of isogenic urease-negative mutants of Helicobacter pylori by allelic exchange. J Bacteriol 174, 42124217. [Google Scholar]
  13. Forman D. (1996). Helicobacter pylori and gastric cancer. Scand J Gastroenterol Suppl 215 (Suppl 215), 4851.[CrossRef] [Google Scholar]
  14. Forsyth M. H., Cover T. L. (2000). Intercellular communication in Helicobacter pylori: luxS is essential for the production of an extracellular signaling molecule. Infect Immun 68, 31933199.[CrossRef] [Google Scholar]
  15. Garren M., Azam F. (2010). New method for counting bacteria associated with coral mucus. Appl Environ Microbiol 76, 61286133.[CrossRef] [Google Scholar]
  16. Geis G., Leying H., Suerbaum S., Opferkuch W. (1990). Unusual fatty acid substitution in lipids and lipopolysaccharides of Helicobacter pylori . J Clin Microbiol 28, 930932. [Google Scholar]
  17. Goodwin C. S., Mendall M. M., Northfield T. C. (1997). Helicobacter pylori infection. Lancet 349, 265269.[CrossRef] [Google Scholar]
  18. Hazell S. L., Graham D. Y. (1990). Unsaturated fatty acids and viability of Helicobacter (Campylobacter) pylori . J Clin Microbiol 28, 10601061. [Google Scholar]
  19. Inoue H., Kawano G., Nagasawa H., Sakuda S. (2002). Isolation of elemental sulfur as a self-growth-inhibiting substance produced by Legionella pneumophila . Appl Environ Microbiol 68, 48094811.[CrossRef] [Google Scholar]
  20. Jiménez-Soto L. F., Rohrer S., Jain U., Ertl C., Sewald X., Haas R. (2012). Effects of cholesterol on Helicobacter pylori growth and virulence properties in vitro . Helicobacter 17, 133139.[CrossRef] [Google Scholar]
  21. Joyce E. A., Bassler B. L., Wright A. (2000). Evidence for a signaling system in Helicobacter pylori: detection of a luxS-encoded autoinducer. J Bacteriol 182, 36383643.[CrossRef] [Google Scholar]
  22. Kabara J. J., Swieczkowski D. M., Conley A. J., Truant J. P. (1972). Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother 2, 2328.[CrossRef] [Google Scholar]
  23. Karita M., Kouchiyama T., Okita K., Nakazawa T. (1991). New small animal model for human gastric Helicobacter pylori infection: success in both nude and euthymic mice. Am J Gastroenterol 86, 15961603. [Google Scholar]
  24. Knapp H. R., Melly M. A. (1986). Bactericidal effects of polyunsaturated fatty acids. J Infect Dis 84–94, 101093/infdis/154184. [Google Scholar]
  25. Kovaleva A. S., Bulina V. M., Ivanov L. L., Pyatnova Yu. B., Evstigneeva R. P. (1974). Use of the Wittig reaction in the synthesis of unsaturated alcohol acetates. Z Organ Khim 10, 696700, (in Russian). [Google Scholar]
  26. Marshall B. J. (1994). Helicobacter pylori. Am J Gastroenterol 89 (Suppl.8), 116128. [Google Scholar]
  27. Morgan D. R., Freedman R., Depew C. E., Kraft W. G. (1987). Growth of Campylobacter pylori in liquid media. J Clin Microbiol 25, 21232125. [Google Scholar]
  28. NCCLS (1990). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Publication M7-A2, 2nd edn.Villanova, PA: National Committee for Clinical Laboratory Standards [Google Scholar]
  29. Nieman C. (1954). Influence of trace amounts of fatty acids on the growth of microorganisms. Bacteriol Rev 18, 147163. [Google Scholar]
  30. Nomura A., Stemmermann G. N., Chyou P. H., Perez-Perez G. I., Blaser M. J. (1994). Helicobacter pylori infection and the risk for duodenal and gastric ulceration. Ann Intern Med 120, 977981.[CrossRef] [Google Scholar]
  31. Obonyo M., Zhang L., Thamphiwatana S., Pornpattananangkul D., Fu V., Zhang L. (2012). Antibacterial activities of liposomal linolenic acids against antibiotic-resistant Helicobacter pylori . Mol Pharm 9, 26772685.[CrossRef] [Google Scholar]
  32. Occhialini A., Marais A., Alm R., Garcia F., Sierra R., Mégraud F. (2000). Distribution of open reading frames of plasticity region of strain J99 in Helicobacter pylori strains isolated from gastric carcinoma and gastritis patients in Costa Rica. Infect Immun 68, 62406249.[CrossRef] [Google Scholar]
  33. Olivieri R., Bugnoli M., Armellini D., Bianciardi S., Rappuoli R., Bayeli P. F., Abate L., Esposito E., de Gregorio L., other authors. (1993). Growth of Helicobacter pylori in media containing cyclodextrins. J Clin Microbiol 31, 160162. [Google Scholar]
  34. Petschow B. W., Batema R. P., Ford L. L. (1996). Susceptibility of Helicobacter pylori to bactericidal properties of medium-chain monoglycerides and free fatty acids. Antimicrob Agents Chemother 40, 302306. [Google Scholar]
  35. Shimomura H., Hosoda K., Hayashi S., Yokota K., Oguma K., Hirai Y. (2009). Steroids mediate resistance to the bactericidal effect of phosphatidylcholines against Helicobacter pylori . FEMS Microbiol Lett 301, 8494.[CrossRef] [Google Scholar]
  36. Sun C. Q., O'Connor C. J., Roberton A. M. (2003). Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori . FEMS Immunol Med Microbiol 36, 917.[CrossRef] [Google Scholar]
  37. Tanaka R., Kunisada T., Kushida N., Yamada K., Ikeda S., Noike M., Ono Y., Itoh N., Takami H., other authors. (2011). Branched fatty acids inhibit the biosynthesis of menaquinone in Helicobacter pylori . J Antibiot (Tokyo) 64, 151153.[CrossRef] [Google Scholar]
  38. Taneera J., Moran A. P., Hynes S. O., Nilsson H. O., Al-Soud Wa., Wadström T. (2002). Influence of activated charcoal, porcine gastric mucin and β-cyclodextrin on the morphology and growth of intestinal and gastric Helicobacter spp. Microbiology 148, 677684. [Google Scholar]
  39. Thompson L., Cockayne A., Spiller R. C. (1994). Inhibitory effect of polyunsaturated fatty acids on the growth of Helicobacter pylori: a possible explanation of the effect of diet on peptic ulceration. Gut 35, 15571561.[CrossRef] [Google Scholar]
  40. Wang L. H., He Y., Gao Y., Wu J. E., Dong Y. H., He C., Wang S. X., Weng L. X., Xu J. L., other authors. (2004). A bacterial cell–cell communication signal with cross-kingdom structural analogues. Mol Microbiol 51, 903912.[CrossRef] [Google Scholar]
  41. Warren J. R., Marshall B. J. (1983). Unidentified curved bacilli on gastric epithelium in active chronic gastritis. Lancet 1, 12731275. [Google Scholar]

Data & Media loading...


Supplementary Data


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error