1887

Abstract

The antiterminator RfaH is required for the expression of LPS, capsule, haemolysin, exotoxin, haemin uptake receptor and F pilus. As these structures are critical for bacterial virulence, loss of RfaH usually leads to attenuation. Here, we inactivated the gene of O:3 to study its role in this enteropathogen. RNA sequencing of the WT and Δ strain transcriptomes revealed that RfaH acted as a highly specific regulator that enhanced the transcription of the operons involved in biosynthesis of LPS O-antigen and outer core (OC), but did not affect the expression of enterobacterial common antigen. Interestingly, the transcriptome of the Δ strain was very similar to that of an O-antigen-negative mutant. This indicated that some of the changes seen in the Δ strain, such as the genes involved in outer membrane homeostasis or in the stress-response-associated Cpx pathway, were actually due to indirect responses via the loss of O-antigen. The decreased amount of LPS on the Δ strain cell surface resulted in an attenuated stress response, and lower resistance to compounds such as SDS and polymyxin B. However, the Δ strain was significantly more resistant to complement-mediated killing by normal human serum. Taken together, our results revealed a novel role of RfaH acting as a highly specific regulator of O-antigen and OC of LPS in O:3. It may be speculated that RfaH might have an role in controlling tissue-specific expression of bacterial surface oligo/polysaccharides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000076
2015-06-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/6/1282.html?itemId=/content/journal/micro/10.1099/mic.0.000076&mimeType=html&fmt=ahah

References

  1. Al-Hendy A.. ( 1992;). Lipopolysaccharide of Yersinia enterocolitica: molecular genetics and role in virulence. PhD thesis Turku, Finland: University of Turku;
  2. Al-Hendy A., Toivanen P., Skurnik M.. ( 1991a;). Expression cloning of Yersinia enterocolitica O:3 rfb gene cluster in Escherichia coli K12. . Microb Pathog 10:, 47–59 [CrossRef] [PubMed]
    [Google Scholar]
  3. Al-Hendy A., Toivanen P., Skurnik M.. ( 1991b;). Rapid method for isolation and staining of bacterial lipopolysaccharide. . Microbiol Immunol 35:, 331–333 [CrossRef] [PubMed]
    [Google Scholar]
  4. Al-Hendy A., Toivanen P., Skurnik M.. ( 1992;). Lipopolysaccharide O side chain of Yersinia enterocolitica O:3 is an essential virulence factor in an orally infected murine model. . Infect Immun 60:, 870–875 [PubMed]
    [Google Scholar]
  5. Bailey M. J. A., Hughes C., Koronakis V.. ( 1997;). RfaH and the ops element, components of a novel system controlling bacterial transcription elongation. . Mol Microbiol 26:, 845–851 [CrossRef] [PubMed]
    [Google Scholar]
  6. Bailey M. J., Hughes C., Koronakis V.. ( 2000;). In vitro recruitment of the RfaH regulatory protein into a specialised transcription complex, directed by the nucleic acid ops element. . Mol Gen Genet 262:, 1052–1059 [CrossRef] [PubMed]
    [Google Scholar]
  7. Bengoechea J. A., Pinta E., Salminen T., Oertelt C., Holst O., Radziejewska-Lebrecht J., Piotrowska-Seget Z., Venho R., Skurnik M.. ( 2002;). Functional characterization of Gne (UDP-N-acetylglucosamine-4-epimerase), Wzz (chain length determinant), and Wzy (O-antigen polymerase) of Yersinia enterocolitica serotype O:8. . J Bacteriol 184:, 4277–4287 [CrossRef] [PubMed]
    [Google Scholar]
  8. Bengoechea J. A., Najdenski H., Skurnik M.. ( 2004;). Lipopolysaccharide O antigen status of Yersinia enterocolitica O:8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. . Mol Microbiol 52:, 451–469 [CrossRef] [PubMed]
    [Google Scholar]
  9. Bertani G.. ( 2004;). Lysogeny at mid-twentieth century: P1, P2, and other experimental systems. . J Bacteriol 186:, 595–600 [CrossRef] [PubMed]
    [Google Scholar]
  10. Biedzka-Sarek M., Venho R., Skurnik M.. ( 2005;). Role of YadA, Ail, and lipopolysaccharide in serum resistance of Yersinia enterocolitica serotype O:3. . Infect Immun 73:, 2232–2244 [CrossRef] [PubMed]
    [Google Scholar]
  11. Brill W. J., Magasanik B.. ( 1969;). Genetic and metabolic control of histidase and urocanase in Salmonella typhimurium, strain 15-59. . J Biol Chem 244:, 5392–5402 [PubMed]
    [Google Scholar]
  12. Burmann B. M., Schweimer K., Luo X., Wahl M. C., Stitt B. L., Gottesman M. E., Rösch P.. ( 2010;). A NusE : NusG complex links transcription and translation. . Science 328:, 501–504 [CrossRef] [PubMed]
    [Google Scholar]
  13. Burmann B. M., Knauer S. H., Sevostyanova A., Schweimer K., Mooney R. A., Landick R., Artsimovitch I., Rösch P.. ( 2012;). An α helix to β barrel domain switch transforms the transcription factor RfaH into a translation factor. . Cell 150:, 291–303 [CrossRef] [PubMed]
    [Google Scholar]
  14. Carter H. D., Svetlov V., Artsimovitch I.. ( 2004;). Highly divergent RfaH orthologs from pathogenic proteobacteria can substitute for Escherichia coli RfaH both in vivo and in vitro. . J Bacteriol 186:, 2829–2840 [CrossRef] [PubMed]
    [Google Scholar]
  15. Cimini D., De Rosa M., Carlino E., Ruggiero A., Schiraldi C.. ( 2013;). Homologous overexpression of RfaH in E. coli K4 improves the production of chondroitin-like capsular polysaccharide. . Microb Cell Fact 12:, 46 [CrossRef] [PubMed]
    [Google Scholar]
  16. Demarre G., Guérout A. M., Matsumoto-Mashimo C., Rowe-Magnus D. A., Marlière P., Mazel D.. ( 2005;). A new family of mobilizable suicide plasmids based on broad host range R388 plasmid (IncW) and RP4 plasmid (IncPalpha) conjugative machineries and their cognate Escherichia coli host strains. . Res Microbiol 156:, 245–255 [CrossRef] [PubMed]
    [Google Scholar]
  17. Hitchcock P. J., Brown T. M.. ( 1983;). Morphological heterogeneity amongst Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. . J Bacteriol 154:, 269–277 [PubMed]
    [Google Scholar]
  18. Hunke S., Keller R., Müller V. S.. ( 2012;). Signal integration by the Cpx-envelope stress system. . FEMS Microbiol Lett 326:, 12–22 [CrossRef] [PubMed]
    [Google Scholar]
  19. Kapatral V., Campbell J. W., Minnich S. A., Thomson N. R., Matsumura P., Prüss B. M.. ( 2004;). Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. . Microbiology 150:, 2289–2300 [CrossRef] [PubMed]
    [Google Scholar]
  20. Korpela M. T., Kurittu J. S., Karvinen J. T., Karp M. T.. ( 1998;). A recombinant Escherichia coli sensor strain for the detection of tetracyclines. . Anal Chem 70:, 4457–4462 [CrossRef] [PubMed]
    [Google Scholar]
  21. Krauss J. H., Weckesser J., Mayer H.. ( 1988;). Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria. . Int J Syst Bacteriol 38:, 157–163 [CrossRef]
    [Google Scholar]
  22. Langmead B., Trapnell C., Pop M., Salzberg S. L.. ( 2009;). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. . Genome Biol 10:, R25 [CrossRef] [PubMed]
    [Google Scholar]
  23. Lindberg A. A., Hellerqvist C. -G.. ( 1980;). Rough mutants of Salmonella typhimurium: immunochemical and structural analysis of lipopolysaccharides from rfaH mutants. . J Gen Microbiol 116:, 25–32 [PubMed]
    [Google Scholar]
  24. Meier-Dieter U., Acker G., Mayer H.. ( 1989;). Detection of enterobacterial common antigen on bacterial cell surfaces by colony-immunoblotting: effect of its linkage to lipopolysaccharide. . FEMS Microbiol Lett 59:, 215–219 [CrossRef] [PubMed]
    [Google Scholar]
  25. Michiels T., Cornelis G. R.. ( 1991;). Secretion of hybrid proteins by the Yersinia Yop export system. . J Bacteriol 173:, 1677–1685 [PubMed]
    [Google Scholar]
  26. Moores A., Chipper-Keating S., Sun L., McVicker G., Wales L., Gashi K., Blomfield I. C.. ( 2014;). RfaH suppresses small RNA MicA inhibition of fimB expression in Escherichia coli K-12. . J Bacteriol 196:, 148–156 [CrossRef] [PubMed]
    [Google Scholar]
  27. Morales V. M., Bäckman A., Bagdasarian M.. ( 1991;). A series of wide-host-range low-copy-number vectors that allow direct screening for recombinants. . Gene 97:, 39–47 [CrossRef] [PubMed]
    [Google Scholar]
  28. Muszyński A., Rabsztyn K., Knapska K., Duda K. A., Duda-Grychtoł K., Kasperkiewicz K., Radziejewska-Lebrecht J., Holst O., Skurnik M.. ( 2013;). Enterobacterial common antigen and O-specific polysaccharide coexist in the lipopolysaccharide of Yersinia enterocolitica serotype O:3. . Microbiology 159:, 1782–1793 [CrossRef] [PubMed]
    [Google Scholar]
  29. Nagy G., Dobrindt U., Schneider G., Khan A. S., Hacker J., Emödy L.. ( 2002;). Loss of regulatory protein RfaH attenuates virulence of uropathogenic Escherichia coli. . Infect Immun 70:, 4406–4413 [CrossRef] [PubMed]
    [Google Scholar]
  30. Nagy G., Danino V., Dobrindt U., Pallen M., Chaudhuri R., Emödy L., Hinton J. C., Hacker J.. ( 2006;). Down-regulation of key virulence factors makes the Salmonella enterica serovar Typhimurium rfaH mutant a promising live-attenuated vaccine candidate. . Infect Immun 74:, 5914–5925 [CrossRef] [PubMed]
    [Google Scholar]
  31. NandyMazumdar M., Artsimovitch I.. ( 2015;). Ubiquitous transcription factors display structural plasticity and diverse functions: NusG proteins – shifting shapes and paradigms. . Bioessays 37:, 324–334 [CrossRef] [PubMed]
    [Google Scholar]
  32. Pajunen M. I., Kiljunen S. J., Söderholm M. -E. L., Skurnik M.. ( 2001;). Complete genomic sequence of the lytic bacteriophage φYeO3-12 of Yersinia enterocolitica serotype O:3. . J Bacteriol 183:, 1928–1937 [CrossRef] [PubMed]
    [Google Scholar]
  33. Parada J. L., Magasanik B.. ( 1975;). Expression of the hut operons of Salmonella typhimurium in Klebsiella aerogenes and in Escherichia coli. . J Bacteriol 124:, 1263–1268 [PubMed]
    [Google Scholar]
  34. Pekkola-Heino K., Viljanen M. K., Ståhlberg T. H., Granfors K., Toivanen A.. ( 1987;). Monoclonal antibodies reacting selectively with core and O-polysaccharide of Yersinia enterocolitica O:3 lipopolysaccharide. . Acta Pathol Microbiol Immunol Scand [C] 95:, 27–34 [PubMed]
    [Google Scholar]
  35. Pinta E., Duda K. A., Hanuszkiewicz A., Salminen T. A., Bengoechea J. A., Hyytiäinen H., Lindner B., Radziejewska-Lebrecht J., Holst O., Skurnik M.. ( 2010;). Characterization of the six glycosyltransferases involved in the biosynthesis of Yersinia enterocolitica serotype O:3 lipopolysaccharide outer core. . J Biol Chem 285:, 28333–28342 [CrossRef] [PubMed]
    [Google Scholar]
  36. Pinta E., Li Z., Batzilla J., Pajunen M., Kasanen T., Rabsztyn K., Rakin A., Skurnik M.. ( 2012;). Identification of three oligo-/polysaccharide-specific ligases in Yersinia enterocolitica. . Mol Microbiol 83:, 125–136 [CrossRef] [PubMed]
    [Google Scholar]
  37. Reinés M., Llobet E., Llompart C. M., Moranta D., Pérez-Gutiérrez C., Bengoechea J. A.. ( 2012;). Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. . J Bacteriol 194:, 3173–3188 [CrossRef] [PubMed]
    [Google Scholar]
  38. Robinson M. D., McCarthy D. J., Smyth G. K.. ( 2010;). edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. . Bioinformatics 26:, 139–140 [CrossRef] [PubMed]
    [Google Scholar]
  39. Skurnik M.. ( 1984;). Lack of correlation between the presence of plasmids and fimbriae in Yersinia enterocolitica and Yersinia pseudotuberculosis. . J Appl Bacteriol 56:, 355–363 [CrossRef] [PubMed]
    [Google Scholar]
  40. Skurnik M.. ( 1995;). Role of YadA in Yersinia-enterocolitica-induced reactive arthritis: a hypothesis. . Trends Microbiol 3:, 318–319 [CrossRef] [PubMed]
    [Google Scholar]
  41. Skurnik M., Bengoechea J. A.. ( 2003;). The biosynthesis and biological role of lipopolysaccharide O-antigens of pathogenic Yersiniae. . Carbohydr Res 338:, 2521–2529 [CrossRef] [PubMed]
    [Google Scholar]
  42. Skurnik M., Venho R., Toivanen P., al-Hendy A.. ( 1995;). A novel locus of Yersinia enterocolitica serotype O:3 involved in lipopolysaccharide outer core biosynthesis. . Mol Microbiol 17:, 575–594 [CrossRef] [PubMed]
    [Google Scholar]
  43. Skurnik M., Venho R., Bengoechea J. -A., Moriyón I.. ( 1999;). The lipopolysaccharide outer core of Yersinia enterocolitica serotype O:3 is required for virulence and plays a role in outer membrane integrity. . Mol Microbiol 31:, 1443–1462 [CrossRef] [PubMed]
    [Google Scholar]
  44. Skurnik M., Hyytiäinen H. J., Happonen L. J., Kiljunen S., Datta N., Mattinen L., Williamson K., Kristo P., Szeliga M., other authors. ( 2012;). Characterization of the genome, proteome, and structure of yersiniophage φR1-37. . J Virol 86:, 12625–12642 [CrossRef] [PubMed]
    [Google Scholar]
  45. Trapnell C., Hendrickson D. G., Sauvageau M., Goff L., Rinn J. L., Pachter L.. ( 2013;). Differential analysis of gene regulation at transcript resolution with RNA-seq. . Nat Biotechnol 31:, 46–53 [CrossRef] [PubMed]
    [Google Scholar]
  46. Uliczka F., Pisano F., Schaake J., Stolz T., Rohde M., Fruth A., Strauch E., Skurnik M., Batzilla J., other authors. ( 2011;). Unique cell adhesion and invasion properties of Yersinia enterocolitica O:3, the most frequent cause of human Yersiniosis. . PLoS Pathog 7, e1002117.doi:10.1371/journal.ppat. 7:, e1002117 [CrossRef] [PubMed]
    [Google Scholar]
  47. Varjosalo M., Keskitalo S., Van Drogen A., Nurkkala H., Vichalkovski A., Aebersold R., Gstaiger M.. ( 2013;). The protein interaction landscape of the human CMGC kinase group. . Cell Rep 3:, 1306–1320 [CrossRef] [PubMed]
    [Google Scholar]
  48. Vogt S. L., Raivio T. L.. ( 2012;). Just scratching the surface: an expanding view of the Cpx envelope stress response. . FEMS Microbiol Lett 326:, 2–11 [CrossRef] [PubMed]
    [Google Scholar]
  49. Yethon J. A., Vinogradov E., Perry M. B., Whitfield C.. ( 2000;). Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of Escherichia coli by interfering with core phosphorylation. . J Bacteriol 182:, 5620–5623 [CrossRef] [PubMed]
    [Google Scholar]
  50. Zhang L., Skurnik M.. ( 1994;). Isolation of an R M+ mutant of Yersinia enterocolitica serotype O:8 and its application in construction of rough mutants utilizing mini-Tn5 derivatives and lipopolysaccharide-specific phage. . J Bacteriol 176:, 1756–1760 [PubMed]
    [Google Scholar]
  51. Zhang L., Al-Hendy A., Toivanen P., Skurnik M.. ( 1993;). Genetic organization and sequence of the rfb gene cluster of Yersinia enterocolitica serotype O:3: similarities to the dTDP-l-rhamnose biosynthesis pathway of Salmonella and to the bacterial polysaccharide transport systems. . Mol Microbiol 9:, 309–321 [CrossRef] [PubMed]
    [Google Scholar]
  52. Zhang L., Radziejewska-Lebrecht J., Krajewska-Pietrasik D., Toivanen P., Skurnik M.. ( 1997;). Molecular and chemical characterization of the lipopolysaccharide O-antigen and its role in the virulence of Yersinia enterocolitica serotype O:8. . Mol Microbiol 23:, 63–76 [CrossRef] [PubMed]
    [Google Scholar]
  53. Zhang G., Meredith T. C., Kahne D.. ( 2013;). On the essentiality of lipopolysaccharide to Gram-negative bacteria. . Curr Opin Microbiol 16:, 779–785 [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000076
Loading
/content/journal/micro/10.1099/mic.0.000076
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error