1887

Abstract

is an important lactic acid starter for food production as well as a cell factory for production of food grade additives, among which natural flavour production is one of the main interests of food producers. Flavour production is associated with the degradation of amino acids and comprehensive studies are required to elucidate mechanisms behind these pathways. In this study using chemically defined medium, labelled substrate and steady-state cultivation, new data for the catabolism of threonine in have been obtained. The biosynthesis of glycine in this organism is associated with the catabolic pathways of glucose and serine. Nevertheless, if threonine concentration in the growth environment exceeds that of serine, threonine becomes the main source for glycine biosynthesis and the utilization of serine decreases. Also, the conversion of threonine to glycine was initiated by a threonine aldolase and this was the principal pathway used for threonine degradation. As in , serine hydroxymethyltransferase in may possess a secondary activity as threonine aldolase. Other catabolic pathways of threonine (e.g. threonine dehydrogenase and threonine dehydratase) were not detected.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000071
2015-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1073.html?itemId=/content/journal/micro/10.1099/mic.0.000071&mimeType=html&fmt=ahah

References

  1. Aller K., Adamberg K., Timarova V., Seiman A., Feštšenko D., Vilu R. 2014; Nutritional requirements and media development for Lactococcus lactis IL1403. Appl Microbiol Biotechnol 98:5871–5881 [View Article][PubMed]
    [Google Scholar]
  2. Bolotin A., Wincker P., Mauger S., Jaillon O., Malarme K., Weissenbach J., Ehrlich S. D., Sorokin A. 2001; The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res 11:731–753 [View Article][PubMed]
    [Google Scholar]
  3. Bongers R. S., Hoefnagel M. H. N., Kleerebezem M. 2005; High-level acetaldehyde production in Lactococcus lactis by metabolic engineering. Appl Environ Microbiol 71:1109–1113 [View Article][PubMed]
    [Google Scholar]
  4. Borneman A. R., McCarthy J. M., Chambers P. J., Bartowsky E. J. 2012; Comparative analysis of the Oenococcus oeni pan genome reveals genetic diversity in industrially-relevant pathways. BMC Genomics 13:373 [View Article][PubMed]
    [Google Scholar]
  5. Burgess C., O’Connell-Motherway M., Sybesma W., Hugenholtz J., van Sinderen D. 2004; Riboflavin production in Lactococcus lactis: potential for in situ production of vitamin-enriched foods. Appl Environ Microbiol 70:5769–5777 [View Article][PubMed]
    [Google Scholar]
  6. Chaves A. C. S. D., Fernandez M., Lerayer A. L. S., Mierau I., Kleerebezem M., Hugenholtz J. 2002; Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. . Appl Environ Microbiol 68:5656–5662 [View Article][PubMed]
    [Google Scholar]
  7. Christensen J. E., Dudley E. G., Pederson J. A., Steele J. L. 1999; Peptidases and amino acid catabolism in lactic acid bacteria. Antonie van Leeuwenhoek 76:217–246 [View Article][PubMed]
    [Google Scholar]
  8. Cocaign-Bousquet M., Garrigues C., Novak L., Lindley N. D., Loublere P. 1995; Rational development of a simple synthetic medium for the sustained growth of Lactococcus lactis. . J Appl Bacteriol 79:108–116 [View Article]
    [Google Scholar]
  9. Cox J., Mann M. 2008; MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372 [View Article][PubMed]
    [Google Scholar]
  10. Epperly B. R., Dekker E. E. 1991; L-threonine dehydrogenase from Escherichia coli. Identification of an active site cysteine residue and metal ion studies. J Biol Chem 266:6086–6092[PubMed]
    [Google Scholar]
  11. Fernández M., Zúñiga M. 2006; Amino acid catabolic pathways of lactic acid bacteria. Crit Rev Microbiol 32:155–183 [View Article][PubMed]
    [Google Scholar]
  12. Gaspar P., Carvalho A. L., Vinga S., Santos H., Neves A. R. 2013; From physiology to systems metabolic engineering for the production of biochemicals by lactic acid bacteria. Biotechnol Adv 31:764–788 [View Article][PubMed]
    [Google Scholar]
  13. Hu P., Yang M., Zhang A., Wu J., Chen B., Hua Y., Yu J., Xiao J., Jin M. 2011; Complete genome sequence of Streptococcus suis serotype 14 strain JS14. J Bacteriol 193:2375–2376 [View Article][PubMed]
    [Google Scholar]
  14. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J. 2005; Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590 [View Article][PubMed]
    [Google Scholar]
  15. Lahtvee P. J., Adamberg K., Arike L., Nahku R., Aller K., Vilu R. 2011; Multi-omics approach to study the growth efficiency and amino acid metabolism in Lactococcus lactis at various specific growth rates. Microb Cell Fact 10:12 [View Article][PubMed]
    [Google Scholar]
  16. Liu J. Q., Dairi T., Itoh N., Kataoka M., Shimizu S., Yamada H. 1998; Gene cloning, biochemical characterization and physiological role of a thermostable low-specificity L-threonine aldolase from Escherichia coli. . Eur J Biochem 255:220–226 [View Article][PubMed]
    [Google Scholar]
  17. Loubiere P., Cocaign-Bousquet M., Matos J., Goma G., Lindley N. D. 1997; Influence of end-products inhibition and nutrient limitations on the growth of Lactococcus lactis subsp. lactis. . J Appl Microbiol 82:95–100 [View Article]
    [Google Scholar]
  18. Marcus J. P., Dekker E. E. 1993; pH-dependent decarboxylation of 2-amino-3-ketobutyrate, the unstable intermediate in the threonine dehydrogenase-initiated pathway for threonine utilization. Biochem Biophys Res Commun 190:1066–1072 [View Article][PubMed]
    [Google Scholar]
  19. Monschau N., Sahm H., Stahmann K. P. 1998; Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. . Appl Environ Microbiol 64:4283–4290[PubMed]
    [Google Scholar]
  20. Noens E. E., Lolkema J. S. 2014; Physiology and substrate specificity of two closely related amino acid transporters, SerP1 and SerP2, of Lactococcus lactis . J Bacteriol 197:951–958 [View Article][PubMed]
    [Google Scholar]
  21. Novák L., Loubiere P. 2000; The metabolic network of Lactococcus lactis: distribution of 14C-labeled substrates between catabolic and anabolic pathways. J Bacteriol 182:1136–1143 [View Article][PubMed]
    [Google Scholar]
  22. Ogawa H., Gomi T., Fujioka M. 2000; Serine hydroxymethyltransferase and threonine aldolase: are they identical?. Int J Biochem Cell Biol 32:289–301 [View Article][PubMed]
    [Google Scholar]
  23. Ott A., Germond J. E., Chaintreau A. 2000; Origin of acetaldehyde during milk fermentation using 13C-labeled precursors. J Agric Food Chem 48:1512–1517 [View Article][PubMed]
    [Google Scholar]
  24. Pieterse B., Leer R. J., Schuren F. H., van der Werf M. J. 2005; Unravelling the multiple effects of lactic acid stress on Lactobacillus plantarum by transcription profiling. Microbiology 151:3881–3894 [View Article][PubMed]
    [Google Scholar]
  25. Price C. E., Zeyniyev A., Kuipers O. P., Kok J. 2012; From meadows to milk to mucosa - adaptation of Streptococcus and Lactococcus species to their nutritional environments. FEMS Microbiol Rev 36:949–971 [View Article][PubMed]
    [Google Scholar]
  26. Schmidt A., Sivaraman J., Li Y., Larocque R., Barbosa J. A., Smith C., Matte A., Schrag J. D., Cygler M. 2001; Three-dimensional structure of 2-amino-3-ketobutyrate CoA ligase from Escherichia coli complexed with a PLP-substrate intermediate: inferred reaction mechanism. Biochemistry 40:5151–5160 [View Article][PubMed]
    [Google Scholar]
  27. Simic P., Willuhn J., Sahm H., Eggeling L. 2002; Identification of glyA (encoding serine hydroxymethyltransferase) and its use together with the exporter ThrE to increase L-threonine accumulation by Corynebacterium glutamicum. . Appl Environ Microbiol 68:3321–3327 [View Article][PubMed]
    [Google Scholar]
  28. Sun Z., Chen X., Wang J., Zhao W., Shao Y., Wu L., Zhou Z., Sun T., Wang L. et al. 2011; Complete genome sequence of Streptococcus thermophilus strain ND03. J Bacteriol 193:793–794 [View Article][PubMed]
    [Google Scholar]
  29. Vizcaíno J. A., Côté R. G., Csordas A., Dianes J. A., Fabregat A., Foster J. M., Griss J., Alpi E., Birim M. et al. 2013; The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res 41:D1D1063–D1069 [View Article][PubMed]
    [Google Scholar]
  30. Zhang G., Mills D. A., Block D. E. 2009; Development of chemically defined media supporting high-cell-density growth of lactococci, enterococci, and streptococci. Appl Environ Microbiol 75:1080–1087 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000071
Loading
/content/journal/micro/10.1099/mic.0.000071
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Supplementary Data

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error