1887

Abstract

Although lichens are generally described as mutualistic symbioses of fungi and photosynthetic partners, they also harbour a diverse non-phototrophic microbiota, which is now regarded as a significant part of the symbiosis. However, the role of the non-phototrophic microbiota within the lichen is still poorly known, although possible functions have been suggested, including phosphate solubilization and various lytic activities. In the present study we focus on the bacterial biota associated with the foliose lichen . To address our hypotheses on possible roles of the non-phototrophic microbiota, we used a metagenomic approach. A DNA library of bacterial sequence contigs was constructed from the lichen thallus material and the bacterial microbiota DNA sequence was analysed in terms of phylogenetic diversity and functional gene composition. Analysis of about 30 000 such bacterial contigs from the metagenome revealed significant representation of several genes involved in phosphate solubilization and biopolymer degradation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000069
2015-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/989.html?itemId=/content/journal/micro/10.1099/mic.0.000069&mimeType=html&fmt=ahah

References

  1. Altschul S. F. , Gish W. , Miller W. , Myers E. W. , Lipman D. J. . ( 1990; ). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef] [PubMed]
    [Google Scholar]
  2. Amann R. I. , Ludwig W. , Schleifer K. H. . ( 1995; ). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. . Microbiol Rev 59:, 143–169.[PubMed]
    [Google Scholar]
  3. Apel A. K. , Sola-Landa A. , Rodríguez-García A. , Martín J. F. . ( 2007; ). Phosphate control of phoA, phoC and phoD gene expression in Streptomyces coelicolor reveals significant differences in binding of PhoP to their promoter regions. . Microbiology 153:, 3527–3537. [CrossRef] [PubMed]
    [Google Scholar]
  4. Bates S. T. , Cropsey G. W. G. , Caporaso J. G. , Knight R. , Fierer N. . ( 2011; ). Bacterial communities associated with the lichen symbiosis. . Appl Environ Microbiol 77:, 1309–1314. [CrossRef] [PubMed]
    [Google Scholar]
  5. Beckett R. P. , Kranner I. , Minibayeva F. V. . ( 2008; ). Stress physiology and the symbiosis. . In Lichen Biology, , 2nd edn., pp. 134–151. Edited by Nash T. H. . . Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  6. Beckett R. P. , Zavarzina A. G. , Liers C. . ( 2013; ). Oxidoreductases and cellulases in lichens: possible roles in lichen biology and soil organic matter turnover. . Fungal Biol 117:, 431–438. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bjelland T. , Grube M. , Hoem S. , Jorgensen S. L. , Daae F. L. , Thorseth I. H. , Ovreås L. . ( 2011; ). Microbial metacommunities in the lichen–rock habitat. . Environ Microbiol Rep 3:, 434–442. [CrossRef] [PubMed]
    [Google Scholar]
  8. Boddy L. , Dyer P. S. , Helfer S. . ( 2010; ). Plant pests and perfect partners. . In From Another Kingdom, pp. 52–65. Edited by Boddy L. , Coleman M. . . Edinbugh:: Royal Botanic Gardens;.
    [Google Scholar]
  9. Cao L. , Xu J. , Li M. , Wu G. , Wang J. , Guan Y. , He J. , Li S. , Hong Q. . ( 2013; ). Characterization and analysis of three newly isolated hexachlorocyclohexane (HCH)-degrading strains. . Int Biodeterior Biodegradation 85:, 407–412. [CrossRef]
    [Google Scholar]
  10. Cardinale M. , Puglia A. M. , Grube M. . ( 2006; ). Molecular analysis of lichen-associated bacterial communities. . FEMS Microbiol Ecol 57:, 484–495. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cardinale M. , Vieira de Castro J. , Müller H. , Berg G. , Grube M. . ( 2008; ). In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria . . FEMS Microbiol Ecol 66:, 63–71. [CrossRef] [PubMed]
    [Google Scholar]
  12. Chevreux, B., Wetter, T. & Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. Comput Sci Biol: Proc German Conference on Bioinformatics GCB'99 GCB, pp. 45–56.
  13. Chhabra S. , Brazil D. , Morrissey J. , Burke J. I. , O’Gara F. , Dowling D. N. . ( 2013; ). Characterization of mineral phosphate solubilization traits from a barley rhizosphere soil functional metagenome. . Microbiologyopen 2:, 717–724.[PubMed]
    [Google Scholar]
  14. de los Ríos A. , Ramírez R. , Estévez P. . ( 1997; ). Production of several isoforms of β-1,4-glucanase by the cyanolichen Peltigera canina . . Physiol Plant 100:, 159–164. [CrossRef]
    [Google Scholar]
  15. Goldstein A. H. . ( 1995; ). Recent progress in understanding the molecular genetics and biochemistry of calcium phosphate solubilization by gram negative bacteria. . Biol Agric Hortic 12:, 185–193. [CrossRef]
    [Google Scholar]
  16. Goldstein A. H. . ( 1996; ). Involvement of the quinoprotein glucose dehydrogenase in the solubilization of exogenous phosphates by Gram-negative bacteria. . In Phosphate in Microorganisms: Cellular and Molecular Biology, pp. 197–203. Edited by Gorini E. Y. , Silver S. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  17. Goldstein, A. H. (2001). Bioprocessing of rock phosphate ore: essential technical considerations for the development of a successful commercial technology. In Proceedings of the 4th International Fertilizer Industry Association Technical Conference, p. 220. Paris: International Fertilizer Industry Association.
  18. González I. , Ayuso-Sacido A. , Anderson A. , Genilloud O. . ( 2005; ). Actinomycetes isolated from lichens: evaluation of their diversity and detection of biosynthetic gene sequences. . FEMS Microbiol Ecol 54:, 401–415. [CrossRef] [PubMed]
    [Google Scholar]
  19. Grube M. , Cardinale M. , de Castro J. V. Jr , Müller H. , Berg G. . ( 2009; ). Species-specific structural and functional diversity of bacterial communities in lichen symbioses. . ISME J 3:, 1105–1115. [CrossRef] [PubMed]
    [Google Scholar]
  20. Grube M. , Köberl M. , Lackner S. , Berg C. , Berg G. . ( 2012; ). Host–parasite interaction and microbiome response: effects of fungal infections on the bacterial community of the Alpine lichen Solorina crocea . . FEMS Microbiol Ecol 82:, 472–481. [CrossRef] [PubMed]
    [Google Scholar]
  21. Grube M. , Cernava T. , Soh J. , Fuchs S. , Aschenbrenner I. , Lassek C. , Wegner U. , Becker D. , Riedel K. et al. ( 2015; ). Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics. . ISME J 9:, 412–424. [CrossRef] [PubMed]
    [Google Scholar]
  22. Henkel P. A. , Plotnikova T. T. . ( 1973; ). Nitrogen-fixing bacteria in lichens. . Izv Akad Nauk SSR Ser Biol 1973:, 807–813.
    [Google Scholar]
  23. Henkel P. A. , Yuzhakova L. A. . ( 1936; ). Nitrogen-fixing bacteria in lichens. . Izv Biol Inst Permsk Gos Univ 10:, 9–10.
    [Google Scholar]
  24. Hodkinson B. P. , Lutzoni F. . ( 2009; ). A microbiotic survey of lichen-associated bacteria reveals a new lineage from the Rhiozobiales. . Symbiosis 49:, 163–180. [CrossRef]
    [Google Scholar]
  25. Hodkinson B. P. , Gottel N. R. , Schadt C. W. , Lutzoni F. . ( 2012; ). Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. . Environ Microbiol 14:, 147–161. [CrossRef] [PubMed]
    [Google Scholar]
  26. Khan M. S. , Zaidi A. , Ahemad M. , Oves M. , Wani P. A. . ( 2010; ). Plant growth promotion by phosphate solubilizing fungi – current perspective. . Arch Agron Soil Sci 56:, 73–98. [CrossRef]
    [Google Scholar]
  27. Liba C. M. , Ferrara F. I. S. , Manfio G. P. , Fantinatti-Garboggini F. , Albuquerque R. C. , Pavan C. , Ramos P. L. , Moreira-Filho C. A. , Barbosa H. R. . ( 2006; ). Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. . J Appl Microbiol 101:, 1076–1086. [CrossRef] [PubMed]
    [Google Scholar]
  28. Miadlikowska J. , Lutzoni F. . ( 2004; ). Phylogenetic classification of peltigeralean fungi (Peltigerales, Ascomycota) based on ribosomal RNA small and large subunits. . Am J Bot 91:, 449–464. [CrossRef] [PubMed]
    [Google Scholar]
  29. Muggia L. , Klug B. , Berg G. , Grube M. . ( 2013; ). Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization. . Appl Soil Ecol 68:, 20–25. [CrossRef]
    [Google Scholar]
  30. Mushegian A. A. , Peterson C. N. , Baker C. C. M. , Pringle A. . ( 2011; ). Bacterial diversity across individual lichens. . Appl Environ Microbiol 77:, 4249–4252. [CrossRef] [PubMed]
    [Google Scholar]
  31. Nash T. H. . (ed.) ( 2008; ). Lichen Biology, , 2nd edn.. Cambridge:: Cambridge University Press;. [CrossRef]
    [Google Scholar]
  32. Palmqvist K. . ( 2000; ). Carbon economy in lichens. . New Phytol 148:, 11–36. [CrossRef]
    [Google Scholar]
  33. Richardson A. E. , Hadobas P. A. , Hayes J. E. , O'Hara C. P. , Simpson R. J. . ( 2001; ). Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. . Plant Soil 229:, 47–56. [CrossRef]
    [Google Scholar]
  34. Rodríguez H. , Fraga R. , Gonzalez T. , Bashan Y. . ( 2006; ). Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. . Plant Soil 287:, 15–21. [CrossRef]
    [Google Scholar]
  35. Sashidhar B. , Podile A. R. . ( 2010; ). Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. . J Appl Microbiol 109:, 1–12.[PubMed]
    [Google Scholar]
  36. Schneider T. , Schmid E. , de Castro J. V. Jr , Cardinale M. , Eberl L. , Grube M. , Berg G. , Riedel K. . ( 2011; ). Structure and function of the symbiosis partners of the lung lichen (Lobaria pulmonaria L. Hoffm.) analyzed by metaproteomics. . Proteomics 11:, 2752–2756. [CrossRef] [PubMed]
    [Google Scholar]
  37. Sharma S. B. , Sayyed R. Z. , Trivedi M. H. , Gobi T. A. . ( 2013; ). Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. . SpringerPlus 2:, 587–601. [CrossRef] [PubMed]
    [Google Scholar]
  38. Sigurbjörnsdóttir M. A. , Heiðmarsson S. , Jónsdóttir A. R. , Vilhelmsson O. . ( 2014; ). Novel bacteria associated with Arctic seashore lichens have potential roles in nutrient scavenging. . Can J Microbiol 60:, 307–317. [CrossRef] [PubMed]
    [Google Scholar]
  39. Sinnemann, S. J., Andrésson, Ó. A., Brown, D. W. & Miao, V. P. W. (2000). Cloning and heterologous expression of Solorina crocea pyrG. Curr Genet 37, 333–338.
  40. Sturz A. V. , Nowak J. . ( 2000; ). Endophytic communities of rhizobacteria and the strategies required to create yield enhancing associations with crops. . Appl Soil Ecol 15:, 183–190. [CrossRef]
    [Google Scholar]
  41. Sudhakar P. , Chattopadhyay G. N. , Gangwar S. K. , Ghosh J. K. . ( 2000; ). Effect of foliar application of Azotobacter, Azospirillum and Beijerinckia on leaf yield and quality of mulberry (Morus alba). . J Agric Sci 134:, 227–234. [CrossRef]
    [Google Scholar]
  42. Tatusov R. L. , Galperin M. Y. , Natale D. A. , Koonin E. V. . ( 2000; ). The COG database: a tool for genome-scale analysis of protein functions and evolution. . Nucleic Acids Res 28:, 33–36. [CrossRef] [PubMed]
    [Google Scholar]
  43. Thomas T. , Gilbert J. , Meyer F. . ( 2012; ). Metagenomics – a guide from sampling to data analysis. . Microb Inform Exp 2:, 3.[PubMed] [CrossRef]
    [Google Scholar]
  44. Wang Q. , Garrity G. M. , Tiedje J. M. , Cole J. R. . ( 2007; ). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. . Appl Environ Microbiol 73:, 5261–5267. [CrossRef] [PubMed]
    [Google Scholar]
  45. Zhao K. , Penttinen P. , Zhang X. , Ao X. , Liu M. , Yu X. , Chen Q. . ( 2014; ). Maize rhizosphere in Sichuan, China, hosts plant growth promoting Burkholderia cepacia with phosphate solubilizing and antifungal abilities. . Microbiol Res 169:, 76–82. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000069
Loading
/content/journal/micro/10.1099/mic.0.000069
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error