1887

Abstract

possesses a lone xtraytoplasmic unction (ECF) sigma factor, σ. In , the ECF sigma factor, σ, is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in (termed PrsS) and explored its role in σ regulation. Herein, we demonstrate that although a cognate σ anti-sigma factor currently remains elusive, phenocopies in a wealth of regards. Specifically, expression mimics the upregulation observed for in response to DNA-damaging agents, cell wall-targeting antibiotics and during growth in human serum and murine macrophages. mutants also display the same sensitivities of mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to HO and MMS. Finally, a role for PrsS in virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σ function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000065
2015-05-01
2020-04-08
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1136.html?itemId=/content/journal/micro/10.1099/mic.0.000065&mimeType=html&fmt=ahah

References

  1. Anderson M., Chen Y. H., Butler E. K., Missiakas D. M.. 2011; EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus. J Bacteriol193:1583–1589 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae T., Banger A. K., Wallace A., Glass E. M., Aslund F., Schneewind O., Missiakas D. M.. 2004; Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A101:12312–12317 [CrossRef][PubMed]
    [Google Scholar]
  3. Barnes D. E., Lindahl T., Sedgwick B.. 1993; DNA repair. Curr Opin Cell Biol5:424–433 [CrossRef][PubMed]
    [Google Scholar]
  4. Botelho T. O., Guevara T., Marrero A., Arêde P., Fluxà V. S., Reymond J. L., Oliveira D. C., Gomis-Rüth F. X.. 2011; Structural and functional analyses reveal that Staphylococcus aureus antibiotic resistance factor HmrA is a zinc-dependent endopeptidase. J Biol Chem286:25697–25709 [CrossRef][PubMed]
    [Google Scholar]
  5. Brown K. L., Hughes K. T.. 1995; The role of anti-sigma factors in gene regulation. Mol Microbiol16:397–404 [CrossRef][PubMed]
    [Google Scholar]
  6. Brown M. S., Ye J., Rawson R. B., Goldstein J. L.. 2000; Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell100:391–398 [CrossRef][PubMed]
    [Google Scholar]
  7. Burda W. N., Fields K. B., Gill J. B., Burt R., Shepherd M., Zhang X. P., Shaw L. N.. 2012; Neutral metallated and meso-substituted porphyrins as antimicrobial agents against gram-positive pathogens. Eur J Clin Microbiol Infect Dis31:327–335 [CrossRef][PubMed]
    [Google Scholar]
  8. Burda W. N., Miller H. K., Krute C. N., Leighton S. L., Carroll R. K., Shaw L. N.. 2014; Investigating the genetic regulation of the ECF sigma factor σS in Staphylococcus aureus. BMC Microbiol14:280 [CrossRef][PubMed]
    [Google Scholar]
  9. Burts M. L., Williams W. A., DeBord K., Missiakas D. M.. 2005; EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A102:1169–1174 [CrossRef][PubMed]
    [Google Scholar]
  10. Burts M. L., DeDent A. C., Missiakas D. M.. 2008; EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus. Mol Microbiol69:736–746 [CrossRef][PubMed]
    [Google Scholar]
  11. Cao M., Kobel P. A., Morshedi M. M., Wu M. F., Paddon C., Helmann J. D.. 2002; Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol316:443–457 [CrossRef][PubMed]
    [Google Scholar]
  12. Carroll R. K., Robison T. M., Rivera F. E., Davenport J. E., Jonsson I. M., Florczyk D., Tarkowski A., Potempa J., Koziel J., Shaw L. N.. 2012; Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus. Microbes Infect14:989–999 [CrossRef][PubMed]
    [Google Scholar]
  13. Carroll R. K., Rivera F. E., Cavaco C. K., Johnson G. M., Martin D., Shaw L. N.. 2014; The lone S41 family C-terminal processing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology160:1737–1748 [CrossRef][PubMed]
    [Google Scholar]
  14. Christiansen L. C., Schou S., Nygaard P., Saxild H. H.. 1997; Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol179:2540–2550[PubMed]
    [Google Scholar]
  15. Colland F., Rain J.-C., Gounon P., Labigne A., Legrain P., De Reuse H.. 2001; Identification of the Helicobacter pylori anti-σ28 factor. Mol Microbiol41:477–487 [CrossRef][PubMed]
    [Google Scholar]
  16. Cooke M. S., Evans M. D., Dizdaroglu M., Lunec J.. 2003; Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J17:1195–1214 [CrossRef][PubMed]
    [Google Scholar]
  17. Diekema D. J., Pfaller M. A., Schmitz F. J., Smayevsky J., Bell J., Jones R. N., Beach M..SENTRY Partcipants Group 2001; Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis32:Suppl 2S114–S132 [CrossRef][PubMed]
    [Google Scholar]
  18. Ellermeier C. D., Losick R.. 2006; Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev20:1911–1922 [CrossRef][PubMed]
    [Google Scholar]
  19. Eymann C., Dreisbach A., Albrecht D., Bernhardt J., Becher D., Gentner S., Tam T., Büttner K., Buurman G. et al. 2004; A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics4:2849–2876 [CrossRef][PubMed]
    [Google Scholar]
  20. Fey P. D., Endres J. L., Yajjala V. K., Widhelm T. J., Boissy R. J., Bose J. L., Bayles K. W.. 2013; A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio4:e00537-12 [CrossRef][PubMed]
    [Google Scholar]
  21. Flynn J. M., Levchenko I., Sauer R. T., Baker T. A.. 2004; Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev18:2292–2301 [CrossRef][PubMed]
    [Google Scholar]
  22. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R.. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis. Mol Microbiol51:359–370 [CrossRef][PubMed]
    [Google Scholar]
  23. Hancock R. E., Rozek A.. 2002; Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett206:143–149 [CrossRef][PubMed]
    [Google Scholar]
  24. Hansen G., Hilgenfeld R.. 2013; Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci70:761–775 [CrossRef][PubMed]
    [Google Scholar]
  25. Hastie J. L., Williams K. B., Ellermeier C. D.. 2013; The activity of σV, an extracytoplasmic function σ factor of Bacillus subtilis, is controlled by regulated proteolysis of the anti-σ factor RsiV. J Bacteriol195:3135–3144 [CrossRef][PubMed]
    [Google Scholar]
  26. Heinrich J., Wiegert T.. 2006; YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis. Mol Microbiol62:566–579 [CrossRef][PubMed]
    [Google Scholar]
  27. Helmann J. D.. 2002; The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol46:47–110 [CrossRef][PubMed]
    [Google Scholar]
  28. Helmann J. D.. 2006; Deciphering a complex genetic regulatory network: the Bacillus subtilis sigmaW protein and intrinsic resistance to antimicrobial compounds. Sci Prog89:243–266 [CrossRef][PubMed]
    [Google Scholar]
  29. Henze U., Sidow T., Wecke J., Labischinski H., Berger-Bächi B.. 1993; Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus. J Bacteriol175:1612–1620[PubMed]
    [Google Scholar]
  30. Ho T. D., Ellermeier C. D.. 2011; PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function σ factors in Clostridium difficile. Infect Immun79:3229–3238 [CrossRef][PubMed]
    [Google Scholar]
  31. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. 2002; sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol184:5457–5467 [CrossRef][PubMed]
    [Google Scholar]
  32. Jeong W., Cha M.-K., Kim I.-H.. 2000; Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem275:2924–2930 [CrossRef][PubMed]
    [Google Scholar]
  33. Jorge A. M., Hoiczyk E., Gomes J. P., Pinho M. G.. 2011; EzrA contributes to the regulation of cell size in Staphylococcus aureus. PLoS ONE6:e27542 [CrossRef][PubMed]
    [Google Scholar]
  34. Karran P., Lindahl T., Ofsteng I., Evensen G. B., Seeberg E.. 1980; Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase. J Mol Biol140:101–127 [CrossRef][PubMed]
    [Google Scholar]
  35. Kemp E. H., Sammons R. L., Moir A., Sun D., Setlow P.. 1991; Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J Bacteriol173:4646–4652[PubMed]
    [Google Scholar]
  36. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J.. 2005; Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev29:555–590 [CrossRef][PubMed]
    [Google Scholar]
  37. Klevens R. M., Edwards J. R., Tenover F. C., McDonald L. C., Horan T., Gaynes R..National Nosocomial Infections Surveillance System 2006; Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. Clin Infect Dis42:389–391 [CrossRef][PubMed]
    [Google Scholar]
  38. Klevens R. M., Morrison M. A., Nadle J., Petit S., Gershman K., Ray S., Harrison L. H., Lynfield R., Dumyati G. et al. 2007; Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA298:1763–1771 [CrossRef][PubMed]
    [Google Scholar]
  39. Kolar S. L., Nagarajan V., Oszmiana A., Rivera F. E., Miller H. K., Davenport J. E., Riordan J. T., Potempa J., Barber D. S. et al. 2011; NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus. Microbiology157:2206–2219 [CrossRef][PubMed]
    [Google Scholar]
  40. Kolar S. L., Ibarra J. A., Rivera F. E., Mootz J. M., Davenport J. E., Stevens S. M., Horswill A. R., Shaw L. N.. 2013; Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen2:18–34 [CrossRef][PubMed]
    [Google Scholar]
  41. Koprivnjak T., Mlakar V., Swanson L., Fournier B., Peschel A., Weiss J. P.. 2006; Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus. J Bacteriol188:3622–3630 [CrossRef][PubMed]
    [Google Scholar]
  42. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al. 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature390:249–256 [CrossRef][PubMed]
    [Google Scholar]
  43. MacMicking J., Xie Q. W., Nathan C.. 1997; Nitric oxide and macrophage function. Annu Rev Immunol15:323–350 [CrossRef][PubMed]
    [Google Scholar]
  44. Malachowa N., Whitney A. R., Kobayashi S. D., Sturdevant D. E., Kennedy A. D., Braughton K. R., Shabb D. W., Diep B. A., Chambers H. F. et al. 2011; Global changes in Staphylococcus aureus gene expression in human blood. PLoS ONE6:e18617 [CrossRef][PubMed]
    [Google Scholar]
  45. Merighi M., Majerczak D. R., Stover E. H., Coplin D. L.. 2003; The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii. Mol Plant Microbe Interact16:238–248 [CrossRef][PubMed]
    [Google Scholar]
  46. Miller H. K., Carroll R. K., Burda W. N., Krute C. N., Davenport J. E., Shaw L. N.. 2012; The extracytoplasmic function sigma factor σS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus. J Bacteriol194:4342–4354 [CrossRef][PubMed]
    [Google Scholar]
  47. Monk I. R., Shah I. M., Xu M., Tan M. W., Foster T. J.. 2012; Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis.. MBio3:e00277-11 [CrossRef][PubMed]
    [Google Scholar]
  48. Moran G. J., Krishnadasan A., Gorwitz R. J., Fosheim G. E., McDougal L. K., Carey R. B., Talan D. A..EMERGEncy ID Net Study Group 2006; Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med355:666–674 [CrossRef][PubMed]
    [Google Scholar]
  49. Nakano S., Küster-Schöck E., Grossman A. D., Zuber P.. 2003; Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis. Proc Natl Acad Sci U S A100:13603–13608 [CrossRef][PubMed]
    [Google Scholar]
  50. Nakano S., Erwin K. N., Ralle M., Zuber P.. 2005; Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol Microbiol55:498–510 [CrossRef][PubMed]
    [Google Scholar]
  51. Nilsson D., Lauridsen A. A.. 1992; Isolation of purine auxotrophic mutants of Lactococcus lactis and characterization of the gene hpt encoding hypoxanthine guanine phosphoribosyltransferase. Mol Gen Genet235:359–364 [CrossRef][PubMed]
    [Google Scholar]
  52. Nizan-Koren R., Manulis S., Mor H., Iraki N. M., Barash I.. 2003; The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae. Mol Plant Microbe Interact16:249–260 [CrossRef][PubMed]
    [Google Scholar]
  53. O’Rourke E. J., Chevalier C., Pinto A. V., Thiberge J. M., Ielpi L., Labigne A., Radicella J. P.. 2003; Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A100:2789–2794 [CrossRef][PubMed]
    [Google Scholar]
  54. Orelle C., Dalmas O., Gros P., Di Pietro A., Jault J. M.. 2003; The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J Biol Chem278:47002–47008 [CrossRef][PubMed]
    [Google Scholar]
  55. Pamp S. J., Frees D., Engelmann S., Hecker M., Ingmer H.. 2006; Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus. J Bacteriol188:4861–4870 [CrossRef][PubMed]
    [Google Scholar]
  56. Pietiäinen M., Gardemeister M., Mecklin M., Leskelä S., Sarvas M., Kontinen V. P.. 2005; Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology151:1577–1592 [CrossRef][PubMed]
    [Google Scholar]
  57. Rain J.-C., Selig L., De Reuse H., Battaglia V., Reverdy C., Simon S., Lenzen G., Petel F., Wojcik J. et al. 2001; The protein-protein interaction map of Helicobacter pylori. Nature409:211–215 [CrossRef][PubMed]
    [Google Scholar]
  58. Rivera F. E., Miller H. K., Kolar S. L., Stevens S. M. Jr, Shaw L. N.. 2012; The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus. Proteomics12:263–268 [CrossRef][PubMed]
    [Google Scholar]
  59. Salisbury V., Hedges R. W., Datta N.. 1972; Two modes of “curing” transmissible bacterial plasmids. J Gen Microbiol70:443–452 [CrossRef][PubMed]
    [Google Scholar]
  60. Schöbel S., Zellmeier S., Schumann W., Wiegert T.. 2004; The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol52:1091–1105 [CrossRef][PubMed]
    [Google Scholar]
  61. Schulthess B., Bloes D. A., Berger-Bächi B.. 2012; Opposing roles of σB and σB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus. BMC Microbiol12:17 [CrossRef][PubMed]
    [Google Scholar]
  62. Shaw L. N., Lindholm C., Prajsnar T. K., Miller H. K., Brown M. C., Golonka E., Stewart G. C., Tarkowski A., Potempa J.. 2008; Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS ONE3:e3844 [CrossRef][PubMed]
    [Google Scholar]
  63. Steele V. R., Bottomley A. L., Garcia-Lara J., Kasturiarachchi J., Foster S. J.. 2011; Multiple essential roles for EzrA in cell division of Staphylococcus aureus. Mol Microbiol80:542–555 [CrossRef][PubMed]
    [Google Scholar]
  64. Steinfels E., Orelle C., Fantino J.-R., Dalmas O., Rigaud J.-L., Denizot F., Di Pietro A., Jault J.-M.. 2004; Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry43:7491–7502 [CrossRef][PubMed]
    [Google Scholar]
  65. Sullivan M. A., Yasbin R. E., Young F. E.. 1984; New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene29:21–26 [CrossRef][PubMed]
    [Google Scholar]
  66. Tao L., Wu X., Sun B.. 2010; Alternative sigma factor sigmaH modulates prophage integration and excision in Staphylococcus aureus. PLoS Pathog6:e1000888 [CrossRef][PubMed]
    [Google Scholar]
  67. Tonks A.. 2007;MRSA may kill more US citizens than HIV BMJ335:850– [CrossRef]
    [Google Scholar]
  68. Weiss A., Ibarra J. A., Paoletti J., Carroll R. K., Shaw L. N.. 2014; The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus. Infect Immun82:1424–1435 [CrossRef][PubMed]
    [Google Scholar]
  69. Wu S., de Lencastre H., Tomasz A.. 1996; Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol178:6036–6042[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000065
Loading
/content/journal/micro/10.1099/mic.0.000065
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error