1887

Abstract

possesses a lone xtraytoplasmic unction (ECF) sigma factor, σ. In , the ECF sigma factor, σ, is activated through a proteolytic cascade that begins with cleavage of the RsiW anti-sigma factor by a site-1 protease (S1P), PrsW. We have identified a PrsW homologue in (termed PrsS) and explored its role in σ regulation. Herein, we demonstrate that although a cognate σ anti-sigma factor currently remains elusive, phenocopies in a wealth of regards. Specifically, expression mimics the upregulation observed for in response to DNA-damaging agents, cell wall-targeting antibiotics and during growth in human serum and murine macrophages. mutants also display the same sensitivities of mutants to the DNA-damaging agents methyl methane sulfonate (MMS) and hydrogen peroxide, and the cell wall-targeting antibiotics ampicillin, bacitracin and penicillin-G. These phenotypes appear to be explained by alterations in abundance of proteins involved in drug resistance (Pbp2a, FemB, HmrA) and the response to DNA damage (BmrA, Hpt, Tag). Our findings seem to be mediated by putative proteolytic activity of PrsS, as site-directed mutagenesis of predicted catalytic residues fails to rescue the sensitivity of the mutant to HO and MMS. Finally, a role for PrsS in virulence was identified using human and murine models of infection. Collectively, our data indicate that PrsS and σ function in a similar manner, and perhaps mediate virulence and resistance to DNA damage and cell wall-targeting antibiotics, via a common pathway.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000065
2015-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1136.html?itemId=/content/journal/micro/10.1099/mic.0.000065&mimeType=html&fmt=ahah

References

  1. Anderson M., Chen Y. H., Butler E. K., Missiakas D. M. 2011; EsaD, a secretion factor for the Ess pathway in Staphylococcus aureus . J Bacteriol 193:1583–1589 [View Article][PubMed]
    [Google Scholar]
  2. Bae T., Banger A. K., Wallace A., Glass E. M., Aslund F., Schneewind O., Missiakas D. M. 2004; Staphylococcus aureus virulence genes identified by bursa aurealis mutagenesis and nematode killing. Proc Natl Acad Sci U S A 101:12312–12317 [View Article][PubMed]
    [Google Scholar]
  3. Barnes D. E., Lindahl T., Sedgwick B. 1993; DNA repair. Curr Opin Cell Biol 5:424–433 [View Article][PubMed]
    [Google Scholar]
  4. Botelho T. O., Guevara T., Marrero A., Arêde P., Fluxà V. S., Reymond J. L., Oliveira D. C., Gomis-Rüth F. X. 2011; Structural and functional analyses reveal that Staphylococcus aureus antibiotic resistance factor HmrA is a zinc-dependent endopeptidase. J Biol Chem 286:25697–25709 [View Article][PubMed]
    [Google Scholar]
  5. Brown K. L., Hughes K. T. 1995; The role of anti-sigma factors in gene regulation. Mol Microbiol 16:397–404 [View Article][PubMed]
    [Google Scholar]
  6. Brown M. S., Ye J., Rawson R. B., Goldstein J. L. 2000; Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100:391–398 [View Article][PubMed]
    [Google Scholar]
  7. Burda W. N., Fields K. B., Gill J. B., Burt R., Shepherd M., Zhang X. P., Shaw L. N. 2012; Neutral metallated and meso-substituted porphyrins as antimicrobial agents against gram-positive pathogens. Eur J Clin Microbiol Infect Dis 31:327–335 [View Article][PubMed]
    [Google Scholar]
  8. Burda W. N., Miller H. K., Krute C. N., Leighton S. L., Carroll R. K., Shaw L. N. 2014; Investigating the genetic regulation of the ECF sigma factor σS in Staphylococcus aureus . BMC Microbiol 14:280 [View Article][PubMed]
    [Google Scholar]
  9. Burts M. L., Williams W. A., DeBord K., Missiakas D. M. 2005; EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Natl Acad Sci U S A 102:1169–1174 [View Article][PubMed]
    [Google Scholar]
  10. Burts M. L., DeDent A. C., Missiakas D. M. 2008; EsaC substrate for the ESAT-6 secretion pathway and its role in persistent infections of Staphylococcus aureus . Mol Microbiol 69:736–746 [View Article][PubMed]
    [Google Scholar]
  11. Cao M., Kobel P. A., Morshedi M. M., Wu M. F., Paddon C., Helmann J. D. 2002; Defining the Bacillus subtilis sigma(W) regulon: a comparative analysis of promoter consensus search, run-off transcription/macroarray analysis (ROMA), and transcriptional profiling approaches. J Mol Biol 316:443–457 [View Article][PubMed]
    [Google Scholar]
  12. Carroll R. K., Robison T. M., Rivera F. E., Davenport J. E., Jonsson I. M., Florczyk D., Tarkowski A., Potempa J., Koziel J., Shaw L. N. 2012; Identification of an intracellular M17 family leucine aminopeptidase that is required for virulence in Staphylococcus aureus . Microbes Infect 14:989–999 [View Article][PubMed]
    [Google Scholar]
  13. Carroll R. K., Rivera F. E., Cavaco C. K., Johnson G. M., Martin D., Shaw L. N. 2014; The lone S41 family C-terminal processing protease in Staphylococcus aureus is localized to the cell wall and contributes to virulence. Microbiology 160:1737–1748 [View Article][PubMed]
    [Google Scholar]
  14. Christiansen L. C., Schou S., Nygaard P., Saxild H. H. 1997; Xanthine metabolism in Bacillus subtilis: characterization of the xpt-pbuX operon and evidence for purine- and nitrogen-controlled expression of genes involved in xanthine salvage and catabolism. J Bacteriol 179:2540–2550[PubMed]
    [Google Scholar]
  15. Colland F., Rain J.-C., Gounon P., Labigne A., Legrain P., De Reuse H. 2001; Identification of the Helicobacter pylori anti-σ28 factor. Mol Microbiol 41:477–487 [View Article][PubMed]
    [Google Scholar]
  16. Cooke M. S., Evans M. D., Dizdaroglu M., Lunec J. 2003; Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J 17:1195–1214 [View Article][PubMed]
    [Google Scholar]
  17. Diekema D. J., Pfaller M. A., Schmitz F. J., Smayevsky J., Bell J., Jones R. N., Beach M.SENTRY Partcipants Group 2001; Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin Infect Dis 32:Suppl 2S114–S132 [View Article][PubMed]
    [Google Scholar]
  18. Ellermeier C. D., Losick R. 2006; Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis . Genes Dev 20:1911–1922 [View Article][PubMed]
    [Google Scholar]
  19. Eymann C., Dreisbach A., Albrecht D., Bernhardt J., Becher D., Gentner S., Tam T., Büttner K., Buurman G. et al. 2004; A comprehensive proteome map of growing Bacillus subtilis cells. Proteomics 4:2849–2876 [View Article][PubMed]
    [Google Scholar]
  20. Fey P. D., Endres J. L., Yajjala V. K., Widhelm T. J., Boissy R. J., Bose J. L., Bayles K. W. 2013; A genetic resource for rapid and comprehensive phenotype screening of nonessential Staphylococcus aureus genes. MBio 4:e00537-12 [View Article][PubMed]
    [Google Scholar]
  21. Flynn J. M., Levchenko I., Sauer R. T., Baker T. A. 2004; Modulating substrate choice: the SspB adaptor delivers a regulator of the extracytoplasmic-stress response to the AAA+ protease ClpXP for degradation. Genes Dev 18:2292–2301 [View Article][PubMed]
    [Google Scholar]
  22. Guinn K. M., Hickey M. J., Mathur S. K., Zakel K. L., Grotzke J. E., Lewinsohn D. M., Smith S., Sherman D. R. 2004; Individual RD1-region genes are required for export of ESAT-6/CFP-10 and for virulence of Mycobacterium tuberculosis . Mol Microbiol 51:359–370 [View Article][PubMed]
    [Google Scholar]
  23. Hancock R. E., Rozek A. 2002; Role of membranes in the activities of antimicrobial cationic peptides. FEMS Microbiol Lett 206:143–149 [View Article][PubMed]
    [Google Scholar]
  24. Hansen G., Hilgenfeld R. 2013; Architecture and regulation of HtrA-family proteins involved in protein quality control and stress response. Cell Mol Life Sci 70:761–775 [View Article][PubMed]
    [Google Scholar]
  25. Hastie J. L., Williams K. B., Ellermeier C. D. 2013; The activity of σV, an extracytoplasmic function σ factor of Bacillus subtilis, is controlled by regulated proteolysis of the anti-σ factor RsiV. J Bacteriol 195:3135–3144 [View Article][PubMed]
    [Google Scholar]
  26. Heinrich J., Wiegert T. 2006; YpdC determines site-1 degradation in regulated intramembrane proteolysis of the RsiW anti-sigma factor of Bacillus subtilis . Mol Microbiol 62:566–579 [View Article][PubMed]
    [Google Scholar]
  27. Helmann J. D. 2002; The extracytoplasmic function (ECF) sigma factors. Adv Microb Physiol 46:47–110 [View Article][PubMed]
    [Google Scholar]
  28. Helmann J. D. 2006; Deciphering a complex genetic regulatory network: the Bacillus subtilis sigmaW protein and intrinsic resistance to antimicrobial compounds. Sci Prog 89:243–266 [View Article][PubMed]
    [Google Scholar]
  29. Henze U., Sidow T., Wecke J., Labischinski H., Berger-Bächi B. 1993; Influence of femB on methicillin resistance and peptidoglycan metabolism in Staphylococcus aureus . J Bacteriol 175:1612–1620[PubMed]
    [Google Scholar]
  30. Ho T. D., Ellermeier C. D. 2011; PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function σ factors in Clostridium difficile . Infect Immun 79:3229–3238 [View Article][PubMed]
    [Google Scholar]
  31. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J. 2002; sigmaB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. J Bacteriol 184:5457–5467 [View Article][PubMed]
    [Google Scholar]
  32. Jeong W., Cha M.-K., Kim I.-H. 2000; Thioredoxin-dependent hydroperoxide peroxidase activity of bacterioferritin comigratory protein (BCP) as a new member of the thiol-specific antioxidant protein (TSA)/Alkyl hydroperoxide peroxidase C (AhpC) family. J Biol Chem 275:2924–2930 [View Article][PubMed]
    [Google Scholar]
  33. Jorge A. M., Hoiczyk E., Gomes J. P., Pinho M. G. 2011; EzrA contributes to the regulation of cell size in Staphylococcus aureus . PLoS ONE 6:e27542 [View Article][PubMed]
    [Google Scholar]
  34. Karran P., Lindahl T., Ofsteng I., Evensen G. B., Seeberg E. 1980; Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase. J Mol Biol 140:101–127 [View Article][PubMed]
    [Google Scholar]
  35. Kemp E. H., Sammons R. L., Moir A., Sun D., Setlow P. 1991; Analysis of transcriptional control of the gerD spore germination gene of Bacillus subtilis 168. J Bacteriol 173:4646–4652[PubMed]
    [Google Scholar]
  36. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J. 2005; Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29:555–590 [View Article][PubMed]
    [Google Scholar]
  37. Klevens R. M., Edwards J. R., Tenover F. C., McDonald L. C., Horan T., Gaynes R.National Nosocomial Infections Surveillance System 2006; Changes in the epidemiology of methicillin-resistant Staphylococcus aureus in intensive care units in US hospitals, 1992-2003. Clin Infect Dis 42:389–391 [View Article][PubMed]
    [Google Scholar]
  38. Klevens R. M., Morrison M. A., Nadle J., Petit S., Gershman K., Ray S., Harrison L. H., Lynfield R., Dumyati G. et al. 2007; Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771 [View Article][PubMed]
    [Google Scholar]
  39. Kolar S. L., Nagarajan V., Oszmiana A., Rivera F. E., Miller H. K., Davenport J. E., Riordan J. T., Potempa J., Barber D. S. et al. 2011; NsaRS is a cell-envelope-stress-sensing two-component system of Staphylococcus aureus . Microbiology 157:2206–2219 [View Article][PubMed]
    [Google Scholar]
  40. Kolar S. L., Ibarra J. A., Rivera F. E., Mootz J. M., Davenport J. E., Stevens S. M., Horswill A. R., Shaw L. N. 2013; Extracellular proteases are key mediators of Staphylococcus aureus virulence via the global modulation of virulence-determinant stability. Microbiologyopen 2:18–34 [View Article][PubMed]
    [Google Scholar]
  41. Koprivnjak T., Mlakar V., Swanson L., Fournier B., Peschel A., Weiss J. P. 2006; Cation-induced transcriptional regulation of the dlt operon of Staphylococcus aureus . J Bacteriol 188:3622–3630 [View Article][PubMed]
    [Google Scholar]
  42. Kunst F., Ogasawara N., Moszer I., Albertini A. M., Alloni G., Azevedo V., Bertero M. G., Bessières P., Bolotin A. et al. 1997; The complete genome sequence of the gram-positive bacterium Bacillus subtilis . Nature 390:249–256 [View Article][PubMed]
    [Google Scholar]
  43. MacMicking J., Xie Q. W., Nathan C. 1997; Nitric oxide and macrophage function. Annu Rev Immunol 15:323–350 [View Article][PubMed]
    [Google Scholar]
  44. Malachowa N., Whitney A. R., Kobayashi S. D., Sturdevant D. E., Kennedy A. D., Braughton K. R., Shabb D. W., Diep B. A., Chambers H. F. et al. 2011; Global changes in Staphylococcus aureus gene expression in human blood. PLoS ONE 6:e18617 [View Article][PubMed]
    [Google Scholar]
  45. Merighi M., Majerczak D. R., Stover E. H., Coplin D. L. 2003; The HrpX/HrpY two-component system activates hrpS expression, the first step in the regulatory cascade controlling the Hrp regulon in Pantoea stewartii subsp. stewartii . Mol Plant Microbe Interact 16:238–248 [View Article][PubMed]
    [Google Scholar]
  46. Miller H. K., Carroll R. K., Burda W. N., Krute C. N., Davenport J. E., Shaw L. N. 2012; The extracytoplasmic function sigma factor σS protects against both intracellular and extracytoplasmic stresses in Staphylococcus aureus . J Bacteriol 194:4342–4354 [View Article][PubMed]
    [Google Scholar]
  47. Monk I. R., Shah I. M., Xu M., Tan M. W., Foster T. J. 2012; Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. . MBio 3:e00277-11 [View Article][PubMed]
    [Google Scholar]
  48. Moran G. J., Krishnadasan A., Gorwitz R. J., Fosheim G. E., McDougal L. K., Carey R. B., Talan D. A.EMERGEncy ID Net Study Group 2006; Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674 [View Article][PubMed]
    [Google Scholar]
  49. Nakano S., Küster-Schöck E., Grossman A. D., Zuber P. 2003; Spx-dependent global transcriptional control is induced by thiol-specific oxidative stress in Bacillus subtilis . Proc Natl Acad Sci U S A 100:13603–13608 [View Article][PubMed]
    [Google Scholar]
  50. Nakano S., Erwin K. N., Ralle M., Zuber P. 2005; Redox-sensitive transcriptional control by a thiol/disulphide switch in the global regulator, Spx. Mol Microbiol 55:498–510 [View Article][PubMed]
    [Google Scholar]
  51. Nilsson D., Lauridsen A. A. 1992; Isolation of purine auxotrophic mutants of Lactococcus lactis and characterization of the gene hpt encoding hypoxanthine guanine phosphoribosyltransferase. Mol Gen Genet 235:359–364 [View Article][PubMed]
    [Google Scholar]
  52. Nizan-Koren R., Manulis S., Mor H., Iraki N. M., Barash I. 2003; The regulatory cascade that activates the Hrp regulon in Erwinia herbicola pv. gypsophilae . Mol Plant Microbe Interact 16:249–260 [View Article][PubMed]
    [Google Scholar]
  53. O’Rourke E. J., Chevalier C., Pinto A. V., Thiberge J. M., Ielpi L., Labigne A., Radicella J. P. 2003; Pathogen DNA as target for host-generated oxidative stress: role for repair of bacterial DNA damage in Helicobacter pylori colonization. Proc Natl Acad Sci U S A 100:2789–2794 [View Article][PubMed]
    [Google Scholar]
  54. Orelle C., Dalmas O., Gros P., Di Pietro A., Jault J. M. 2003; The conserved glutamate residue adjacent to the Walker-B motif is the catalytic base for ATP hydrolysis in the ATP-binding cassette transporter BmrA. J Biol Chem 278:47002–47008 [View Article][PubMed]
    [Google Scholar]
  55. Pamp S. J., Frees D., Engelmann S., Hecker M., Ingmer H. 2006; Spx is a global effector impacting stress tolerance and biofilm formation in Staphylococcus aureus . J Bacteriol 188:4861–4870 [View Article][PubMed]
    [Google Scholar]
  56. Pietiäinen M., Gardemeister M., Mecklin M., Leskelä S., Sarvas M., Kontinen V. P. 2005; Cationic antimicrobial peptides elicit a complex stress response in Bacillus subtilis that involves ECF-type sigma factors and two-component signal transduction systems. Microbiology 151:1577–1592 [View Article][PubMed]
    [Google Scholar]
  57. Rain J.-C., Selig L., De Reuse H., Battaglia V., Reverdy C., Simon S., Lenzen G., Petel F., Wojcik J. et al. 2001; The protein-protein interaction map of Helicobacter pylori . Nature 409:211–215 [View Article][PubMed]
    [Google Scholar]
  58. Rivera F. E., Miller H. K., Kolar S. L., Stevens S. M. Jr, Shaw L. N. 2012; The impact of CodY on virulence determinant production in community-associated methicillin-resistant Staphylococcus aureus . Proteomics 12:263–268 [View Article][PubMed]
    [Google Scholar]
  59. Salisbury V., Hedges R. W., Datta N. 1972; Two modes of “curing” transmissible bacterial plasmids. J Gen Microbiol 70:443–452 [View Article][PubMed]
    [Google Scholar]
  60. Schöbel S., Zellmeier S., Schumann W., Wiegert T. 2004; The Bacillus subtilis sigmaW anti-sigma factor RsiW is degraded by intramembrane proteolysis through YluC. Mol Microbiol 52:1091–1105 [View Article][PubMed]
    [Google Scholar]
  61. Schulthess B., Bloes D. A., Berger-Bächi B. 2012; Opposing roles of σB and σB-controlled SpoVG in the global regulation of esxA in Staphylococcus aureus . BMC Microbiol 12:17 [View Article][PubMed]
    [Google Scholar]
  62. Shaw L. N., Lindholm C., Prajsnar T. K., Miller H. K., Brown M. C., Golonka E., Stewart G. C., Tarkowski A., Potempa J. 2008; Identification and characterization of sigma, a novel component of the Staphylococcus aureus stress and virulence responses. PLoS ONE 3:e3844 [View Article][PubMed]
    [Google Scholar]
  63. Steele V. R., Bottomley A. L., Garcia-Lara J., Kasturiarachchi J., Foster S. J. 2011; Multiple essential roles for EzrA in cell division of Staphylococcus aureus . Mol Microbiol 80:542–555 [View Article][PubMed]
    [Google Scholar]
  64. Steinfels E., Orelle C., Fantino J.-R., Dalmas O., Rigaud J.-L., Denizot F., Di Pietro A., Jault J.-M. 2004; Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis . Biochemistry 43:7491–7502 [View Article][PubMed]
    [Google Scholar]
  65. Sullivan M. A., Yasbin R. E., Young F. E. 1984; New shuttle vectors for Bacillus subtilis and Escherichia coli which allow rapid detection of inserted fragments. Gene 29:21–26 [View Article][PubMed]
    [Google Scholar]
  66. Tao L., Wu X., Sun B. 2010; Alternative sigma factor sigmaH modulates prophage integration and excision in Staphylococcus aureus . PLoS Pathog 6:e1000888 [View Article][PubMed]
    [Google Scholar]
  67. Tonks A. 2007MRSA may kill more US citizens than HIV BMJ 335:850– [View Article]
    [Google Scholar]
  68. Weiss A., Ibarra J. A., Paoletti J., Carroll R. K., Shaw L. N. 2014; The δ subunit of RNA polymerase guides promoter selectivity and virulence in Staphylococcus aureus . Infect Immun 82:1424–1435 [View Article][PubMed]
    [Google Scholar]
  69. Wu S., de Lencastre H., Tomasz A. 1996; Sigma-B, a putative operon encoding alternate sigma factor of Staphylococcus aureus RNA polymerase: molecular cloning and DNA sequencing. J Bacteriol 178:6036–6042[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000065
Loading
/content/journal/micro/10.1099/mic.0.000065
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error