1887

Abstract

Opportunistic pathogens must adapt to and survive in a wide range of complex ecosystems. is an opportunistic pathogen of horses and many other animals, including humans. The assembly of different surface architecture phenotypes from one genotype is likely to be crucial to the successful exploitation of such an opportunistic lifestyle. Construction of a series of mutants revealed that a serine recombinase, PinR, inverts 114 bp of the promoter of SZO_08560, which is bordered by GTAGACTTTA and TAAAGTCTAC inverted repeats. Inversion acts as a switch, controlling the transcription of this sortase-processed protein, which may enhance the attachment of to equine trachea. The genome of a recently sequenced strain of , 2329 (2329), was found to contain a disruptive internal inversion of 7 kb of the FimIV pilus locus, which is bordered by TAGAAA and TTTCTA inverted repeats. This strain lacks and this inversion may have become irreversible following the loss of this recombinase. Active inversion of FimIV was detected in three strains of , 1770 (1770), B260863 (B260863) and H050840501 (H050840501), all of which encoded . A deletion mutant of 1770 that lacked was no longer capable of inverting its internal region of FimIV. The data highlight redundancy in the PinR sequence recognition motif around a short TAGA consensus and suggest that PinR can reversibly influence the wider surface architecture of , providing this organism with a bet-hedging solution to survival in fluctuating environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000057
2015-05-01
2020-09-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1105.html?itemId=/content/journal/micro/10.1099/mic.0.000057&mimeType=html&fmt=ahah

References

  1. Abbott Y., Acke E., Khan S., Muldoon E. G., Markey B. K., Pinilla M., Leonard F. C., Steward K., Waller A.. 2010; Zoonotic transmission of Streptococcus equi subsp. zooepidemicus from a dog to a handler. J Med Microbiol59:120–123 [CrossRef][PubMed]
    [Google Scholar]
  2. Abraham J. M., Freitag C. S., Clements J. R., Eisenstein B. I.. 1985; An invertible element of DNA controls phase variation of type 1 fimbriae of Escherichia coli. Proc Natl Acad Sci U S A82:5724–5727 [CrossRef][PubMed]
    [Google Scholar]
  3. Baiter S., Benin A., Pinto S. W., Teixeira L. M., Alvim G. G., Luna E., Jackson D., LaClaire L., Elliott J. et al. 2000; Epidemic nephritis in Nova Serrana, Brazil. Lancet355:1776–1780 [CrossRef][PubMed]
    [Google Scholar]
  4. Carver T. J., Rutherford K. M., Berriman M., Rajandream M. A., Barrell B. G., Parkhill J.. 2005; ACT: the Artemis Comparison Tool. Bioinformatics21:3422–3423 [CrossRef][PubMed]
    [Google Scholar]
  5. Cerdeño-Tárraga A. M., Patrick S., Crossman L. C., Blakely G., Abratt V., Lennard N., Poxton I., Duerden B., Harris B. et al. 2005; Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science307:1463–1465 [CrossRef][PubMed]
    [Google Scholar]
  6. Chalker V. J., Brooks H. W., Brownlie J.. 2003; The association of Streptococcus equi subsp. zooepidemicus with canine infectious respiratory disease. Vet Microbiol95:149–156 [CrossRef][PubMed]
    [Google Scholar]
  7. Coyne M. J., Weinacht K. G., Krinos C. M., Comstock L. E.. 2003; Mpi recombinase globally modulates the surface architecture of a human commensal bacterium. Proc Natl Acad Sci U S A100:10446–10451 [CrossRef][PubMed]
    [Google Scholar]
  8. Ebbes M., Bleymüller W. M., Cernescu M., Nölker R., Brutschy B., Niemann H. H.. 2011; Fold and function of the InlB B-repeat. J Biol Chem286:15496–15506 [CrossRef][PubMed]
    [Google Scholar]
  9. Hamilton A., Robinson C., Sutcliffe I. C., Slater J., Maskell D. J., Davis-Poynter N., Smith K., Waller A., Harrington D. J.. 2006; Mutation of the maturase lipoprotein attenuates the virulence of Streptococcus equi to a greater extent than does loss of general lipoprotein lipidation. Infect Immun74:6907–6919 [CrossRef][PubMed]
    [Google Scholar]
  10. Heather Z., Holden M. T., Steward K. F., Parkhill J., Song L., Challis G. L., Robinson C., Davis-Poynter N., Waller A. S.. 2008; A novel streptococcal integrative conjugative element involved in iron acquisition. Mol Microbiol70:1274–1292 [CrossRef][PubMed]
    [Google Scholar]
  11. Holden M. T., Heather Z., Paillot R., Steward K. F., Webb K., Ainslie F., Jourdan T., Bason N. C., Holroyd N. E. et al. 2009; Genomic evidence for the evolution of Streptococcus equi: host restriction, increased virulence, and genetic exchange with human pathogens. PLoS Pathog5:e1000346 [CrossRef][PubMed]
    [Google Scholar]
  12. Hong C. B., Donahue J. M., Giles R. C. Jr, Petrites-Murphy M. B., Poonacha K. B., Roberts A. W., Smith B. J., Tramontin R. R., Tuttle P. A., Swerczek T. W.. 1993; Etiology and pathology of equine placentitis. J Vet Diagn Invest5:56–63 [CrossRef][PubMed]
    [Google Scholar]
  13. Lindahl S. B., Aspán A., Båverud V., Paillot R., Pringle J., Rash N. L., Söderlund R., Waller A. S.. 2013; Outbreak of upper respiratory disease in horses caused by Streptococcus equi subsp. zooepidemicus ST-24. Vet Microbiol166:281–285 [CrossRef][PubMed]
    [Google Scholar]
  14. Maguin E., Prévost H., Ehrlich S. D., Gruss A.. 1996; Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. J Bacteriol178:931–935[PubMed]
    [Google Scholar]
  15. Pesavento P. A., Hurley K. F., Bannasch M. J., Artiushin S., Timoney J. F.. 2008; A clonal outbreak of acute fatal hemorrhagic pneumonia in intensively housed (shelter) dogs caused by Streptococcus equi subsp. zooepidemicus. Vet Pathol45:51–53 [CrossRef][PubMed]
    [Google Scholar]
  16. Rasmussen C. D., Haugaard M. M., Petersen M. R., Nielsen J. M., Pedersen H. G., Bojesen A. M.. 2013; Streptococcus equi subsp. zooepidemicus isolates from equine infectious endometritis belong to a distinct genetic group. Vet Res44:26 [CrossRef][PubMed]
    [Google Scholar]
  17. Smith K. C., Blunden A. S., Whitwell K. E., Dunn K. A., Wales A. D.. 2003; A survey of equine abortion, stillbirth and neonatal death in the UK from 1988 to 1997. Equine Vet J35:496–501 [CrossRef][PubMed]
    [Google Scholar]
  18. Stewart M. K., Cookson B. T.. 2012; Non-genetic diversity shapes infectious capacity and host resistance. Trends Microbiol20:461–466 [CrossRef][PubMed]
    [Google Scholar]
  19. Velineni S., Desoutter D., Perchec A. M., Timoney J. F.. 2014; Characterization of a mucoid clone of Streptococcus zooepidemicus from an epizootic of equine respiratory disease in New Caledonia. Vet J200:82–87 [CrossRef][PubMed]
    [Google Scholar]
  20. Webb K., Jolley K. A., Mitchell Z., Robinson C., Newton J. R., Maiden M. C., Waller A.. 2008; Development of an unambiguous and discriminatory multilocus sequence typing scheme for the Streptococcus zooepidemicus group. Microbiology154:3016–3024 [CrossRef][PubMed]
    [Google Scholar]
  21. Webb K., Barker C., Harrison T., Heather Z., Steward K. F., Robinson C., Newton J. R., Waller A. S.. 2013; Detection of Streptococcus equi subspecies equi using a triplex qPCR assay. Vet J195:300–304 [CrossRef][PubMed]
    [Google Scholar]
  22. Wood J. L., Burrell M. H., Roberts C. A., Chanter N., Shaw Y.. 1993; Streptococci and Pasteurella spp. associated with disease of the equine lower respiratory tract. Equine Vet J25:314–318 [CrossRef][PubMed]
    [Google Scholar]
  23. Wood J. L., Newton J. R., Chanter N., Mumford J. A.. 2005; Association between respiratory disease and bacterial and viral infections in British racehorses. J Clin Microbiol43:120–126 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000057
Loading
/content/journal/micro/10.1099/mic.0.000057
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error