1887

Abstract

Besides the canonical phosphoenolpyruvate-dependent phosphotransferase system (PTS) for carbohydrate transport, most possess the so-called nitrogen PTS (PTS) that transfers a phosphate group from phosphoenolpyruvate (PEP) over enzyme I (EI) and NPr to enzyme IIA (EIIA). The PTS lacks membrane-bound components and functions exclusively in a regulatory capacity. While EIIA has been implicated in a variety of cellular processes such as potassium homeostasis, phosphate starvation, nitrogen metabolism, carbon metabolism, regulation of ABC transporters and poly-β-hydroxybutyrate accumulation in many , the only identified role of NPr is the regulation of biosynthesis of the lipopolysaccharide (LPS) layer by direct interaction with LpxD in . In this study, we provide another phenotype related to NPr. Several lines of evidence demonstrate that strains with increased levels of dephosphorylated NPr are sensitive to envelope stresses, such as osmotic, ethanol and SDS stresses, and these phenotypes are independent of LpxD. The C-terminal region of NPr plays an important role in sensitivity to envelope stresses. Thus, our data suggest that the dephospho-form of NPr affects adaptation to envelope stresses through a C-terminus-dependent mechanism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000056
2015-05-01
2020-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1113.html?itemId=/content/journal/micro/10.1099/mic.0.000056&mimeType=html&fmt=ahah

References

  1. Bartling C. M., Raetz C. R.. 2008; Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. Biochemistry47:5290–5302 [CrossRef][PubMed]
    [Google Scholar]
  2. Chavarría M., Kleijn R. J., Sauer U., Pflüger-Grau K., de Lorenzo V.. 2012; Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. MBio3:e00028–e00012 [CrossRef][PubMed]
    [Google Scholar]
  3. Choi J., Shin D., Yoon H., Kim J., Lee C. R., Kim M., Seok Y. J., Ryu S.. 2010; Salmonella pathogenicity island 2 expression negatively controlled by EIIANtr-SsrB interaction is required for Salmonella virulence. Proc Natl Acad Sci U S A107:20506–20511 [CrossRef][PubMed]
    [Google Scholar]
  4. Deana A., Celesnik H., Belasco J. G.. 2008; The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature451:355–358 [CrossRef][PubMed]
    [Google Scholar]
  5. Deutscher J., Francke C., Postma P. W.. 2006; How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol Mol Biol Rev70:939–1031 [CrossRef][PubMed]
    [Google Scholar]
  6. Dozot M., Poncet S., Nicolas C., Copin R., Bouraoui H., Mazé A., Deutscher J., De Bolle X., Letesson J. J.. 2010; Functional characterization of the incomplete phosphotransferase system (PTS) of the intracellular pathogen Brucella melitensis. PLoS ONE5:e12679 [CrossRef][PubMed]
    [Google Scholar]
  7. Epstein W.. 2003; The roles and regulation of potassium in bacteria. Prog Nucleic Acid Res Mol Biol75:293–320 [CrossRef][PubMed]
    [Google Scholar]
  8. Francke C., Groot Kormelink T., Hagemeijer Y., Overmars L., Sluijter V., Moezelaar R., Siezen R. J.. 2011; Comparative analyses imply that the enigmatic Sigma factor 54 is a central controller of the bacterial exterior. BMC Genomics12:385 [CrossRef][PubMed]
    [Google Scholar]
  9. Goodwin R. A., Gage D. J.. 2014; Biochemical characterization of a nitrogen-type phosphotransferase system reveals that enzyme EINtr integrates carbon and nitrogen signaling in Sinorhizobium meliloti. J Bacteriol196:1901–1907 [CrossRef][PubMed]
    [Google Scholar]
  10. Göpel Y., Papenfort K., Reichenbach B., Vogel J., Görke B.. 2013; Targeted decay of a regulatory small RNA by an adaptor protein for RNase E and counteraction by an anti-adaptor RNA. Genes Dev27:552–564 [CrossRef][PubMed]
    [Google Scholar]
  11. Hansen D. F., Vallurupalli P., Lundström P., Neudecker P., Kay L. E.. 2008; Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do?. J Am Chem Soc130:2667–2675 [CrossRef][PubMed]
    [Google Scholar]
  12. Hayden J. D., Ades S. E.. 2008; The extracytoplasmic stress factor, σE, is required to maintain cell envelope integrity in Escherichia coli. PLoS ONE3:e1573 [CrossRef][PubMed]
    [Google Scholar]
  13. Higa F., Edelstein P. H.. 2001; Potential virulence role of the Legionella pneumophila ptsP ortholog. Infect Immun69:4782–4789 [CrossRef][PubMed]
    [Google Scholar]
  14. Kaddor C., Steinbüchel A.. 2011; Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl Environ Microbiol77:3582–3590 [CrossRef][PubMed]
    [Google Scholar]
  15. Kalamorz F., Reichenbach B., März W., Rak B., Görke B.. 2007; Feedback control of glucosamine-6-phosphate synthase GlmS expression depends on the small RNA GlmZ and involves the novel protein YhbJ in Escherichia coli. Mol Microbiol65:1518–1533 [CrossRef][PubMed]
    [Google Scholar]
  16. Karstens K., Zschiedrich C. P., Bowien B., Stülke J., Görke B.. 2014; Phosphotransferase protein EIIANtr interacts with SpoT, a key enzyme of the stringent response, in Ralstonia eutropha H16. Microbiology160:711–722 [CrossRef][PubMed]
    [Google Scholar]
  17. Kim H. J., Lee C. R., Kim M., Peterkofsky A., Seok Y. J.. 2011; Dephosphorylated NPr of the nitrogen PTS regulates lipid A biosynthesis by direct interaction with LpxD. Biochem Biophys Res Commun409:556–561 [CrossRef][PubMed]
    [Google Scholar]
  18. King N. D., O’Brian M. R.. 2001; Evidence for direct interaction between enzyme INtr and aspartokinase to regulate bacterial oligopeptide transport. J Biol Chem276:21311–21316 [CrossRef][PubMed]
    [Google Scholar]
  19. Koo B. M., Yoon M. J., Lee C. R., Nam T. W., Choe Y. J., Jaffe H., Peterkofsky A., Seok Y. J.. 2004; A novel fermentation/respiration switch protein regulated by enzyme IIAGlc in Escherichia coli. J Biol Chem279:31613–31621 [CrossRef][PubMed]
    [Google Scholar]
  20. Kouzuma A., Endoh T., Omori T., Nojiri H., Yamane H., Habe H.. 2007; The ptsP gene encoding the PTS family protein EINtr is essential for dimethyl sulfone utilization by Pseudomonas putida. FEMS Microbiol Lett275:175–181 [CrossRef][PubMed]
    [Google Scholar]
  21. Lee S. J., Boos W., Bouché J. P., Plumbridge J.. 2000; Signal transduction between a membrane-bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli. EMBO J19:5353–5361 [CrossRef][PubMed]
    [Google Scholar]
  22. Lee C. R., Koo B. M., Cho S. H., Kim Y. J., Yoon M. J., Peterkofsky A., Seok Y. J.. 2005; Requirement of the dephospho-form of enzyme IIANtr for derepression of Escherichia coli K-12 ilvBN expression. Mol Microbiol58:334–344 [CrossRef][PubMed]
    [Google Scholar]
  23. Lee C. R., Cho S. H., Yoon M. J., Peterkofsky A., Seok Y. J.. 2007; Escherichia coli enzyme IIANtr regulates the K+ transporter TrkA. Proc Natl Acad Sci U S A104:4124–4129 [CrossRef][PubMed]
    [Google Scholar]
  24. Lee C. R., Cho S. H., Kim H. J., Kim M., Peterkofsky A., Seok Y. J.. 2010; Potassium mediates Escherichia coli enzyme IIANtr -dependent regulation of sigma factor selectivity. Mol Microbiol78:1468–1483 [CrossRef][PubMed]
    [Google Scholar]
  25. Lee K. J., Jeong C. S., An Y. J., Lee H. J., Park S. J., Seok Y. J., Kim P., Lee J. H., Lee K. H., Cha S. S.. 2011; FrsA functions as a cofactor-independent decarboxylase to control metabolic flux. Nat Chem Biol7:434–436 [CrossRef][PubMed]
    [Google Scholar]
  26. Lee C. R., Park Y. H., Kim M., Kim Y. R., Park S., Peterkofsky A., Seok Y. J.. 2013; Reciprocal regulation of the autophosphorylation of enzyme INtr by glutamine and α-ketoglutarate in Escherichia coli. Mol Microbiol88:473–485 [CrossRef][PubMed]
    [Google Scholar]
  27. Lee C. R., Kim M., Park Y. H., Kim Y. R., Seok Y. J.. 2014; RppH-dependent pyrophosphohydrolysis of mRNAs is regulated by direct interaction with DapF in Escherichia coli. Nucleic Acids Res42:12746–12757 [CrossRef][PubMed]
    [Google Scholar]
  28. Li X., Peterkofsky A., Wang G.. 2008; Solution structure of NPr, a bacterial signal-transducing protein that controls the phosphorylation state of the potassium transporter-regulating protein IIA Ntr. Amino Acids35:531–539 [CrossRef][PubMed]
    [Google Scholar]
  29. Lüttmann D., Heermann R., Zimmer B., Hillmann A., Rampp I. S., Jung K., Görke B.. 2009; Stimulation of the potassium sensor KdpD kinase activity by interaction with the phosphotransferase protein IIANtr in Escherichia coli. Mol Microbiol72:978–994 [CrossRef][PubMed]
    [Google Scholar]
  30. Lüttmann D., Göpel Y., Görke B.. 2012; The phosphotransferase protein EIIANtr modulates the phosphate starvation response through interaction with histidine kinase PhoR in Escherichia coli. Mol Microbiol86:96–110 [CrossRef][PubMed]
    [Google Scholar]
  31. Lux R., Jahreis K., Bettenbrock K., Parkinson J. S., Lengeler J. W.. 1995; Coupling the phosphotransferase system and the methyl-accepting chemotaxis protein-dependent chemotaxis signaling pathways of Escherichia coli. Proc Natl Acad Sci U S A92:11583–11587 [CrossRef][PubMed]
    [Google Scholar]
  32. Mavrodi O. V., Mavrodi D. V., Weller D. M., Thomashow L. S.. 2006; Role of ptsP, orfT, and sss recombinase genes in root colonization by Pseudomonas fluorescens Q8r1-96. Appl Environ Microbiol72:7111–7122 [CrossRef][PubMed]
    [Google Scholar]
  33. Merrick M. J., Coppard J. R.. 1989; Mutations in genes downstream of the rpoN gene (encoding sigma 54) of Klebsiella pneumoniae affect expression from sigma 54-dependent promoters. Mol Microbiol3:1765–1775 [CrossRef][PubMed]
    [Google Scholar]
  34. Nam T. W., Cho S. H., Shin D., Kim J. H., Jeong J. Y., Lee J. H., Roe J. H., Peterkofsky A., Kang S. O. et al. 2001; The Escherichia coli glucose transporter enzyme IICBGlc recruits the global repressor Mlc. EMBO J20:491–498 [CrossRef][PubMed]
    [Google Scholar]
  35. Ninfa A. J.. 2011; Unnecessary signaling: poorly named?. J Bacteriol193:4571–4573 [CrossRef][PubMed]
    [Google Scholar]
  36. Park Y. H., Lee B. R., Seok Y. J., Peterkofsky A.. 2006; In vitro reconstitution of catabolite repression in Escherichia coli. J Biol Chem281:6448–6454 [CrossRef][PubMed]
    [Google Scholar]
  37. Park Y. H., Lee C. R., Choe M., Seok Y. J.. 2013; HPr antagonizes the anti-σ70 activity of Rsd in Escherichia coli. Proc Natl Acad Sci U S A110:21142–21147 [CrossRef][PubMed]
    [Google Scholar]
  38. Peterkofsky A., Wang G., Garrett D. S., Lee B. R., Seok Y. J., Clore G. M.. 2001; Three-dimensional structures of protein-protein complexes in the E. coli PTS. J Mol Microbiol Biotechnol3:347–354[PubMed]
    [Google Scholar]
  39. Peterkofsky A., Wang G., Seok Y. J.. 2006; Parallel PTS systems. Arch Biochem Biophys453:101–107 [CrossRef][PubMed]
    [Google Scholar]
  40. Pflüger K., de Lorenzo V.. 2008; Evidence of in vivo cross talk between the nitrogen-related and fructose-related branches of the carbohydrate phosphotransferase system of Pseudomonas putida. J Bacteriol190:3374–3380 [CrossRef][PubMed]
    [Google Scholar]
  41. Pflüger-Grau K., Görke B.. 2010; Regulatory roles of the bacterial nitrogen-related phosphotransferase system. Trends Microbiol18:205–214 [CrossRef][PubMed]
    [Google Scholar]
  42. Postma P. W., Lengeler J. W., Jacobson G. R.. 1993; Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev57:543–594[PubMed]
    [Google Scholar]
  43. Powell B. S., Court D. L., Inada T., Nakamura Y., Michotey V., Cui X., Reizer A., Saier M. H. Jr, Reizer J.. 1995; Novel proteins of the phosphotransferase system encoded within the rpoN operon of Escherichia coli. Enzyme IIANtr affects growth on organic nitrogen and the conditional lethality of an erats mutant. J Biol Chem270:4822–4839 [CrossRef][PubMed]
    [Google Scholar]
  44. Prell J., Mulley G., Haufe F., White J. P., Williams A., Karunakaran R., Downie J. A., Poole P. S.. 2012; The PTSNtr system globally regulates ATP-dependent transporters in Rhizobium leguminosarum. Mol Microbiol84:117–129 [CrossRef][PubMed]
    [Google Scholar]
  45. Rabus R., Reizer J., Paulsen I., Saier M. H. Jr. 1999; Enzyme INtr from Escherichia coli. A novel enzyme of the phosphoenolpyruvate-dependent phosphotransferase system exhibiting strict specificity for its phosphoryl acceptor, NPr. J Biol Chem274:26185–26191 [CrossRef][PubMed]
    [Google Scholar]
  46. Reaves M. L., Rabinowitz J. D.. 2011; Characteristic phenotypes associated with ptsN-null mutants in Escherichia coli K-12 are absent in strains with functional ilvG. J Bacteriol193:4576–4581 [CrossRef][PubMed]
    [Google Scholar]
  47. Reddy P., Peterkofsky A., McKenney K.. 1989; Hyperexpression and purification of Escherichia coli adenylate cyclase using a vector designed for expression of lethal gene products. Nucleic Acids Res17:10473–10488 [CrossRef][PubMed]
    [Google Scholar]
  48. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A.. 2006; Conserved and variable functions of the σE stress response in related genomes. PLoS Biol4:e2 [CrossRef][PubMed]
    [Google Scholar]
  49. Segura D., Espín G.. 1998; Mutational inactivation of a gene homologous to Escherichia coli ptsP affects poly-β-hydroxybutyrate accumulation and nitrogen fixation in Azotobacter vinelandii. J Bacteriol180:4790–4798[PubMed]
    [Google Scholar]
  50. Seok Y. J., Sondej M., Badawi P., Lewis M. S., Briggs M. C., Jaffe H., Peterkofsky A.. 1997; High affinity binding and allosteric regulation of Escherichia coli glycogen phosphorylase by the histidine phosphocarrier protein, HPr. J Biol Chem272:26511–26521 [CrossRef][PubMed]
    [Google Scholar]
  51. Sperandeo P., Cescutti R., Villa R., Di Benedetto C., Candia D., Dehò G., Polissi A.. 2007; Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol189:244–253 [CrossRef][PubMed]
    [Google Scholar]
  52. Tanaka Y., Kimata K., Aiba H.. 2000; A novel regulatory role of glucose transporter of Escherichia coli: membrane sequestration of a global repressor Mlc. EMBO J19:5344–5352 [CrossRef][PubMed]
    [Google Scholar]
  53. Velázquez F., Pflüger K., Cases I., De Eugenio L. I., de Lorenzo V.. 2007; The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J Bacteriol189:4529–4533 [CrossRef][PubMed]
    [Google Scholar]
  54. Vuorio R., Vaara M.. 1992; Mutants carrying conditionally lethal mutations in outer membrane genes omsA and firA (ssc) are phenotypically similar, and omsA is allelic to firA. J Bacteriol174:7090–7097[PubMed]
    [Google Scholar]
  55. Wang G., Peterkofsky A., Keifer P. A., Li X.. 2005; NMR characterization of the Escherichia coli nitrogen regulatory protein IIANtr in solution and interaction with its partner protein, NPr. Protein Sci14:1082–1090 [CrossRef][PubMed]
    [Google Scholar]
  56. Xu H., Lin W., Xia H., Xu S., Li Y., Yao H., Bai F., Zhang X., Bai Y. et al. 2005; Influence of ptsP gene on pyocyanin production in Pseudomonas aeruginosa. FEMS Microbiol Lett253:103–109 [CrossRef][PubMed]
    [Google Scholar]
  57. Yim H. H., Villarejo M.. 1992; osmY, a new hyperosmotically inducible gene, encodes a periplasmic protein in Escherichia coli. J Bacteriol174:3637–3644[PubMed]
    [Google Scholar]
  58. Yu D., Ellis H. M., Lee E. C., Jenkins N. A., Copeland N. G., Court D. L.. 2000; An efficient recombination system for chromosome engineering in Escherichia coli. Proc Natl Acad Sci U S A97:5978–5983 [CrossRef][PubMed]
    [Google Scholar]
  59. Zhang S., Chen Y., Potvin E., Sanschagrin F., Levesque R. C., McCormack F. X., Lau G. W.. 2005; Comparative signature-tagged mutagenesis identifies Pseudomonas factors conferring resistance to the pulmonary collectin SP-A. PLoS Pathog1:259–268 [CrossRef][PubMed]
    [Google Scholar]
  60. Zhu P. P., Nosworthy N., Ginsburg A., Miyata M., Seok Y. J., Peterkofsky A.. 1997; Expression, purification, and characterization of enzyme IIAGlc of the phosphoenolpyruvate:sugar phosphotransferase system of Mycoplasma capricolum. Biochemistry36:6947–6953 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000056
Loading
/content/journal/micro/10.1099/mic.0.000056
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error