1887

Abstract

In response to starvation, cells differentiate into different subsets, undergoing cannibalism, biofilm formation or sporulation. These processes require a multiple component phosphorelay, wherein the master regulator Spo0A is activated upon phosphorylation by one or a combination of five histidine kinases (KinA–KinE) via two intermediate phosphotransferases, Spo0F and Spo0B. In this study, we focused on KinC, which was originally identified as a sporulation kinase and was later shown to regulate cannibalism and biofilm formation. First, genetic experiments using both the domesticated and undomesticated (biofilm forming) strains revealed that KinC activity and the membrane localization are independent of both the lipid raft marker proteins FloTA and cytoplasmic potassium concentration, which were previously shown to be required for the kinase activity. Next, we demonstrated that KinC controls cannibalism and biofilm formation in a manner dependent on phosphorelay. For further detailed characterization of KinC, we established an IPTG-inducible expression system in the domesticated strain, in which biofilm formation is defective, for simplicity of study. Using this system, we found that the N-terminal transmembrane domain is dispensable but the PAS domain is needed for the kinase activity. An chemical cross-linking experiment demonstrated that the soluble and functional KinC (KinC) forms a tetramer. Based on these results, we propose a revised model in which KinC becomes active by forming a homotetramer via the N-terminal PAS domain, but its activity is independent of both the lipid raft and the potassium leakage, which was previously suggested to be induced by surfactin.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000054
2015-05-01
2020-04-07
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/5/1092.html?itemId=/content/journal/micro/10.1099/mic.0.000054&mimeType=html&fmt=ahah

References

  1. Branda S. S., González-Pastor J. E., Ben-Yehuda S., Losick R., Kolter R.. 2001; Fruiting body formation by Bacillus subtilis. Proc Natl Acad Sci U S A98:11621–11626 [CrossRef][PubMed]
    [Google Scholar]
  2. Britton R. A., Eichenberger P., Gonzalez-Pastor J. E., Fawcett P., Monson R., Losick R., Grossman A. D.. 2002; Genome-wide analysis of the stationary-phase sigma factor (sigma-H) regulon of Bacillus subtilis. J Bacteriol184:4881–4890 [CrossRef][PubMed]
    [Google Scholar]
  3. Browman D. T., Hoegg M. B., Robbins S. M.. 2007; The SPFH domain-containing proteins: more than lipid raft markers. Trends Cell Biol17:394–402 [CrossRef][PubMed]
    [Google Scholar]
  4. Burbulys D., Trach K. A., Hoch J. A.. 1991; Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay. Cell64:545–552 [CrossRef][PubMed]
    [Google Scholar]
  5. Eswaramoorthy P., Guo T., Fujita M.. 2009; In vivo domain-based functional analysis of the major sporulation sensor kinase, KinA, in Bacillus subtilis. J Bacteriol191:5358–5368 [CrossRef][PubMed]
    [Google Scholar]
  6. Eswaramoorthy P., Duan D., Dinh J., Dravis A., Devi S. N., Fujita M.. 2010; The threshold level of the sensor histidine kinase KinA governs entry into sporulation in Bacillus subtilis. J Bacteriol192:3870–3882 [CrossRef][PubMed]
    [Google Scholar]
  7. Eswaramoorthy P., Dravis A., Devi S. N., Vishnoi M., Dao H. A., Fujita M.. 2011; Expression level of a chimeric kinase governs entry into sporulation in Bacillus subtilis. J Bacteriol193:6113–6122 [CrossRef][PubMed]
    [Google Scholar]
  8. Fujita M., Losick R.. 2003; The master regulator for entry into sporulation in Bacillus subtilis becomes a cell-specific transcription factor after asymmetric division. Genes Dev17:1166–1174 [CrossRef][PubMed]
    [Google Scholar]
  9. Fujita M., Losick R.. 2005; Evidence that entry into sporulation in Bacillus subtilis is governed by a gradual increase in the level and activity of the master regulator Spo0A. Genes Dev19:2236–2244 [CrossRef][PubMed]
    [Google Scholar]
  10. Fujita M., González-Pastor J. E., Losick R.. 2005; High- and low-threshold genes in the Spo0A regulon of Bacillus subtilis. J Bacteriol187:1357–1368 [CrossRef][PubMed]
    [Google Scholar]
  11. Fukushima S., Yoshimura M., Chibazakura T., Sato T., Yoshikawa H.. 2006; The putative ABC transporter YheH/YheI is involved in the signalling pathway that activates KinA during sporulation initiation. FEMS Microbiol Lett256:90–97 [CrossRef][PubMed]
    [Google Scholar]
  12. González-Pastor J. E.. 2011; Cannibalism: a social behavior in sporulating Bacillus subtilis. FEMS Microbiol Rev35:415–424 [CrossRef][PubMed]
    [Google Scholar]
  13. González-Pastor J. E., Hobbs E. C., Losick R.. 2003; Cannibalism by sporulating bacteria. Science301:510–513 [CrossRef][PubMed]
    [Google Scholar]
  14. Grossman A. D.. 1995; Genetic networks controlling the initiation of sporulation and the development of genetic competence in Bacillus subtilis. Annu Rev Genet29:477–508 [CrossRef][PubMed]
    [Google Scholar]
  15. Harwood C. R., Cutting S. M..(editors) ( 1990; Molecular Biological Methods for Bacillus Chichester: Wiley;
    [Google Scholar]
  16. Hobbs E. C.. 2006; Control of cannibalism in Bacillus subtilis PhD thesis Harvard University; Cambridge MA, USA:
    [Google Scholar]
  17. Hoch J. A.. 1993; Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis. Annu Rev Microbiol47:441–465 [CrossRef][PubMed]
    [Google Scholar]
  18. Hoch J. A.. 2000; Two-component and phosphorelay signal transduction. Curr Opin Microbiol3:165–170 [CrossRef][PubMed]
    [Google Scholar]
  19. Jiang M., Shao W., Perego M., Hoch J. A.. 2000; Multiple histidine kinases regulate entry into stationary phase and sporulation in Bacillus subtilis. Mol Microbiol38:535–542 [CrossRef][PubMed]
    [Google Scholar]
  20. Kobayashi K., Shoji K., Shimizu T., Nakano K., Sato T., Kobayashi Y.. 1995; Analysis of a suppressor mutation ssb (kinC) of sur0B20 (spo0A) mutation in Bacillus subtilis reveals that kinC encodes a histidine protein kinase. J Bacteriol177:176–182[PubMed]
    [Google Scholar]
  21. Konkol M. A., Blair K. M., Kearns D. B.. 2013; Plasmid-encoded ComI inhibits competence in the ancestral 3610 strain of Bacillus subtilis. J Bacteriol195:4085–4093 [CrossRef][PubMed]
    [Google Scholar]
  22. Kühn R., Torres R. M.. 2002; Cre/loxP recombination system and gene targeting. Methods Mol Biol180:175–204[PubMed]
    [Google Scholar]
  23. LeDeaux J. R., Grossman A. D.. 1995; Isolation and characterization of kinC, a gene that encodes a sensor kinase homologous to the sporulation sensor kinases KinA and KinB in Bacillus subtilis. J Bacteriol177:166–175[PubMed]
    [Google Scholar]
  24. LeDeaux J. R., Yu N., Grossman A. D.. 1995; Different roles for KinA, KinB, and KinC in the initiation of sporulation in Bacillus subtilis. J Bacteriol177:861–863[PubMed]
    [Google Scholar]
  25. López D., Kolter R.. 2010; Functional microdomains in bacterial membranes. Genes Dev24:1893–1902 [CrossRef][PubMed]
    [Google Scholar]
  26. López D., Fischbach M. A., Chu F., Losick R., Kolter R.. 2009;a). Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis. Proc Natl Acad Sci U S A106:280–285 [CrossRef][PubMed]
    [Google Scholar]
  27. López D., Vlamakis H., Losick R., Kolter R.. 2009;b). Paracrine signaling in a bacterium. Genes Dev23:1631–1638 [CrossRef][PubMed]
    [Google Scholar]
  28. López D., Vlamakis H., Losick R., Kolter R.. 2009;c). Cannibalism enhances biofilm development in Bacillus subtilis. Mol Microbiol74:609–618 [CrossRef][PubMed]
    [Google Scholar]
  29. López D., Gontang E. A., Kolter R.. 2010; Potassium sensing histidine kinase in Bacillus subtilis. Methods Enzymol471:229–251 [CrossRef][PubMed]
    [Google Scholar]
  30. McLoon A. L., Kolodkin-Gal I., Rubinstein S. M., Kolter R., Losick R.. 2011; Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis. J Bacteriol193:679–685 [CrossRef][PubMed]
    [Google Scholar]
  31. Meile J. C., Wu L. J., Ehrlich S. D., Errington J., Noirot P.. 2006; Systematic localisation of proteins fused to the green fluorescent protein in Bacillus subtilis: identification of new proteins at the DNA replication factory. Proteomics6:2135–2146 [CrossRef][PubMed]
    [Google Scholar]
  32. Nakano M. M., Marahiel M. A., Zuber P.. 1988; Identification of a genetic locus required for biosynthesis of the lipopeptide antibiotic surfactin in Bacillus subtilis. J Bacteriol170:5662–5668[PubMed]
    [Google Scholar]
  33. Perego M., Hoch J. A.. 2002; Two-component Systems, Phosphorelays, and Regulation of Their Activities by Phosphatases Washington, DC: American Society for Microbiology; [CrossRef]
    [Google Scholar]
  34. Piggot P. J., Hilbert D. W.. 2004; Sporulation of Bacillus subtilis. Curr Opin Microbiol7:579–586 [CrossRef][PubMed]
    [Google Scholar]
  35. Sambrook J., Russell D. W.. 2001; Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; [CrossRef]
    [Google Scholar]
  36. Shank E. A., Kolter R.. 2011; Extracellular signaling and multicellularity in Bacillus subtilis. Curr Opin Microbiol14:741–747 [CrossRef][PubMed]
    [Google Scholar]
  37. Sonenshein A. L.. 2000; Control of sporulation initiation in Bacillus subtilis. Curr Opin Microbiol3:561–566 [CrossRef][PubMed]
    [Google Scholar]
  38. Stephenson K., Hoch J. A.. 2002; Evolution of signalling in the sporulation phosphorelay. Mol Microbiol46:297–304 [CrossRef][PubMed]
    [Google Scholar]
  39. Taylor B. L., Zhulin I. B.. 1999; PAS domains: internal sensors of oxygen, redox potential, and light. Microbiol Mol Biol Rev63:479–506[PubMed]
    [Google Scholar]
  40. Tsien R. Y.. 1998; The green fluorescent protein. Annu Rev Biochem67:509–544 [CrossRef][PubMed]
    [Google Scholar]
  41. Vishnoi M., Narula J., Devi S. N., Dao H. A., Igoshin O. A., Fujita M.. 2013; Triggering sporulation in Bacillus subtilis with artificial two-component systems reveals the importance of proper Spo0A activation dynamics. Mol Microbiol90:181–194[PubMed]
    [Google Scholar]
  42. Yepes A., Schneider J., Mielich B., Koch G., García-Betancur J. C., Ramamurthi K. S., Vlamakis H., López D.. 2012; The biofilm formation defect of a Bacillus subtilis flotillin-defective mutant involves the protease FtsH. Mol Microbiol86:457–471 [CrossRef][PubMed]
    [Google Scholar]
  43. Youngman P., Perkins J. B., Losick R.. 1984; A novel method for the rapid cloning in Escherichia coli of Bacillus subtilis chromosomal DNA adjacent to Tn917 insertions. Mol Gen Genet195:424–433 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000054
Loading
/content/journal/micro/10.1099/mic.0.000054
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error