is a genus of lactic acid bacteria (LAB) consisting of species formerly included in the group. Similar to other LAB, they are commonly found in fermented foods but have also been isolated from environmental and human samples. Currently there are 20 recognized species. Herein, three genomes were sequenced using Illumia Mi-Seq and Roche 454 technologies. Annotation was performed using the Prokka and JGI IMG pipelines. A thorough analysis of the genomics of the strains was performed, in addition to brief comparative analyses of the genus as a whole. Genomic sequence data from the newly sequenced strains and data available in GenBank for other strains was used ( = 10; four , one , one , one , two and one ). The genomes had sizes varying from 1.3 to 2.4 Mb. DNA G+C contents ranged from 35 to 45 mol%. The core- and pan-proteome at genus and species levels were determined. The genus pan-proteome was found to comprise 4712 proteins. Analysis of the four genomes indicated that the core-proteome, consisting of 729 proteins, constitutes 69 % of the species pan-proteome. This large core-set may explain the divergent niches in which this species has been found. In , in addition to a number of phosphotransferase systems conferring the ability to assimilate plant-associated polysaccharides, an extensive proteolytic system was identified.


Article metrics loading...

Loading full text...

Full text loading...



  1. Ahmed R. Z., Siddiqui K., Arman M., Ahmed N. (2012). Characterization of high molecular weight dextran produced by Weissella cibaria CMGDEX3. Carbohydr Polym 90, 441446. [View Article][PubMed] [Google Scholar]
  2. Aleksandrzak-Piekarczyk T. (2013). Lactose and β-Glucosides Metabolism and Its Regulation in Lactococcus lactis: A Review, Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes, Dr. J. Marcelino Kongo (Ed.), ISBN: 978-953-51-0955-6, InTech, DOI: 10.5772/50889. Available from: http://www.intechopen.com/books/lactic-acid-bacteria-r-d-for-food-health-and-livestock-purposes/lactose-and-glucosides-metabolism-and-its-regulation-in-lactococcus-lactis-a-review
  3. Aleksandrzak-Piekarczyk T., Polak J., Jezierska B., Renault P., Bardowski J. (2011). Genetic characterization of the CcpA-dependent, cellobiose-specific PTS system comprising CelB, PtcB and PtcA that transports lactose in Lactococcus lactis IL1403. Int J Food Microbiol 145, 186194. [View Article][PubMed] [Google Scholar]
  4. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. (1990). Basic local alignment search tool. J Mol Biol 215, 403410. [View Article][PubMed] [Google Scholar]
  5. Amari M., Arango L. F., Gabriel V., Robert H., Morel S., Moulis C., Gabriel B., Remaud-Siméon M., Fontagné-Faucher C. (2013). Characterization of a novel dextransucrase from Weissella confusa isolated from sourdough. Appl Microbiol Biotechnol 97, 54135422. [View Article][PubMed] [Google Scholar]
  6. Arendt E. K., Moroni A., Zannini E. (2011). Medical nutrition therapy: use of sourdough lactic acid bacteria as a cell factory for delivering functional biomolecules and food ingredients in gluten free bread. Microb Cell Fact 10 (Suppl 1), S15. [View Article][PubMed] [Google Scholar]
  7. Bilhère E., Lucas P. M., Claisse O., Lonvaud-Funel A. (2009). Multilocus sequence typing of Oenococcus oeni: detection of two subpopulations shaped by intergenic recombination. Appl Environ Microbiol 75, 12911300. [View Article][PubMed] [Google Scholar]
  8. Björkroth K. J., Schillinger U., Geisen R., Weiss N., Hoste B., Holzapfel W. H., Korkeala H. J., Vandamme P. (2002). Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int J Syst Evol Microbiol 52, 141148.[PubMed] [Google Scholar]
  9. Boekhorst J., Siezen R. J., Zwahlen M. C., Vilanova D., Pridmore R. D., Mercenier A., Kleerebezem M., de Vos W. M., Brüssow H., Desiere F. (2004). The complete genomes of Lactobacillus plantarum and Lactobacillus johnsonii reveal extensive differences in chromosome organization and gene content. Microbiology 150, 36013611. [View Article][PubMed] [Google Scholar]
  10. Bounaix M. S., Robert H., Gabriel V., Morel S., Remaud-Siméon M., Gabriel B., Fontagné-Faucher C. (2010). Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression. FEMS Microbiol Lett 311, 1826. [View Article][PubMed] [Google Scholar]
  11. Bove C. G., De Angelis M., Gatti M., Calasso M., Neviani E., Gobbetti M. (2012). Metabolic and proteomic adaptation of Lactobacillus rhamnosus strains during growth under cheese-like environmental conditions compared to de Man, Rogosa, and Sharpe medium. Proteomics 12, 32063218. [View Article][PubMed] [Google Scholar]
  12. Brooijmans R., Smit B., Santos F., van Riel J., de Vos W. M., Hugenholtz J. (2009). Heme and menaquinone induced electron transport in lactic acid bacteria. Microb Cell Fact 8, 28. [View Article][PubMed] [Google Scholar]
  13. Call E. K., Klaenhammer T. R. (2013). Relevance and application of sortase and sortase-dependent proteins in lactic acid bacteria. Front Microbiol 4, 73. [View Article][PubMed] [Google Scholar]
  14. Collins M. D., Samelis J., Metaxopoulos J., Wallbanks S. (1993). Taxonomic studies on some leuconostoc-like organisms from fermented sausages: description of a new genus Weissella for the Leuconostoc paramesenteroides group of species. J Appl Bacteriol 75, 595603. [View Article][PubMed] [Google Scholar]
  15. Contreras-Moreira B., Vinuesa P. (2013). GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79, 76967701. [View Article][PubMed] [Google Scholar]
  16. De Angelis M., Mariotti L., Rossi J., Servili M., Fox P. F., Rollán G., Gobbetti M. (2002). Arginine catabolism by sourdough lactic acid bacteria: purification and characterization of the arginine deiminase pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ Microbiol 68, 61936201. [View Article][PubMed] [Google Scholar]
  17. De Bruyne K., Camu N., De Vuyst L., Vandamme P. (2010). Weissella fabaria sp. nov., from a Ghanaian cocoa fermentation. Int J Syst Evol Microbiol 60, 19992005. [View Article][PubMed] [Google Scholar]
  18. Desvaux M., Hébraud M., Talon R., Henderson I. R. (2009). Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17, 139145. [View Article][PubMed] [Google Scholar]
  19. Diez A. M., Björkroth J., Jaime I., Rovira J. (2009). Microbial, sensory and volatile changes during the anaerobic cold storage of morcilla de Burgos previously inoculated with Weissella viridescens and Leuconostoc mesenteroides . Int J Food Microbiol 131, 168177. [View Article][PubMed] [Google Scholar]
  20. Douillard F. P., de Vos W. M. (2014). Functional genomics of lactic acid bacteria: from food to health. Microb Cell Fact 13 (Suppl 1), S8. [View Article][PubMed] [Google Scholar]
  21. Fouts D. E., Brinkac L., Beck E., Inman J., Sutton G. (2012). PanOCT: automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res 40, e172. [View Article][PubMed] [Google Scholar]
  22. Galle S., Schwab C., Arendt E., Gänzle M. (2010). Exopolysaccharide-forming Weissella strains as starter cultures for sorghum and wheat sourdoughs. J Agric Food Chem 58, 58345841. [View Article][PubMed] [Google Scholar]
  23. Ganzle M., Schwab C. (2009). Ecology of exopolysaccharide formation by lactic acid bacteria: sucrose utilisation, stress tolerance, and biofilm formation. In Bacterial Polysaccharides: Current Innovations and Future Trends, pp. 263278. Edited by Ullrich M. . Norwich, UK: Caister Academic Press. [Google Scholar]
  24. Grissa I., Vergnaud G., Pourcel C. (2007). CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res 35 (Web Server issue), W52W57. [View Article][PubMed] [Google Scholar]
  25. Hols P., Hancy F., Fontaine L., Grossiord B., Prozzi D., Leblond-Bourget N., Decaris B., Bolotin A., Delorme C. et al. (2005). New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev 29, 435463.[PubMed] [Google Scholar]
  26. Huys, G., Leisner, J. & Bjorkroth, J. (2012). The lesser LAB gods: Pediococcus, Leuconostoc, Weissella, Carnobacterium, and affiliated genera. In Lactic Acid Bacteria: Microbiological and Functional Aspects, 4th edn, pp. 93–121. Edited by S. Lahtinen, A. C. Ouwehand, S. Salminen & A. Von Wright. San Diego: CRC Press.
  27. Jeanes, A. R., Science, U. S. & Administration, E. (1978).Dextran bibliography: extensive coverage of research literature (exclusive of clinical) and patents: 1861–1976. Science and Education Administration, US Department of Agriculture: for sale by the Supt. of Docs., US Government Printing Office.
  28. Jones P., Binns D., Chang H. Y., Fraser M., Li W., McAnulla C., McWilliam H., Maslen J., Mitchell A. et al. (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 12361240. [View Article][PubMed] [Google Scholar]
  29. Kang M. S., Kim Y. S., Lee H. C., Lim H. S., Oh J. S. (2012). Comparison of temperature and additives affecting the stability of the probiotic Weissella cibaria . Chonnam Med J 48, 159163. [View Article][PubMed] [Google Scholar]
  30. Kant R., Blom J., Palva A., Siezen R. J., de Vos W. M. (2011). Comparative genomics of Lactobacillus . Microb Biotechnol 4, 323332. [View Article][PubMed] [Google Scholar]
  31. Katina K., Maina N. H., Juvonen R., Flander L., Johansson L., Virkki L., Tenkanen M., Laitila A. (2009). In situ production and analysis of Weissella confusa dextran in wheat sourdough. Food Microbiol 26, 734743. [View Article][PubMed] [Google Scholar]
  32. Kim D. S., Choi S. H., Kim D. W., Nam S. H., Kim R. N., Kang A., Kim A., Park H. S. (2011). Genome sequence of Weissella cibaria KACC 11862. J Bacteriol 193, 797798. [View Article][PubMed] [Google Scholar]
  33. Kim S. Y., Oh C. G., Lee Y. J., Choi K. H., Shin D. S., Lee S. K., Park K. J., Shin H., Park M. S., Lee J. H. (2013). Sequence analysis of a cryptic plasmid pKW2124 from Weissella cibaria KLC140 and construction of a surface display vector. J Microbiol Biotechnol 23, 545554. [View Article][PubMed] [Google Scholar]
  34. Kleerebezem M., Hols P., Bernard E., Rolain T., Zhou M., Siezen R. J., Bron P. A. (2010). The extracellular biology of the lactobacilli. FEMS Microbiol Rev 34, 199230. [View Article][PubMed] [Google Scholar]
  35. Kleppen H. P., Holo H., Jeon S. R., Nes I. F., Yoon S. S. (2012). Novel Podoviridae family bacteriophage infecting Weissella cibaria isolated from Kimchi. Appl Environ Microbiol 78, 72997308. [View Article][PubMed] [Google Scholar]
  36. Korakli M., Vogel R. F. (2006). Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol Biotechnol 71, 790803. [View Article][PubMed] [Google Scholar]
  37. Kot W., Neve H., Heller K. J., Vogensen F. K. (2014). Bacteriophages of Leuconostoc, Oenococcus, and Weissella . Front Microbiol 5, 186. [View Article][PubMed] [Google Scholar]
  38. Krzywinski M., Schein J., Birol İ., Connors J., Gascoyne R., Horsman D., Jones S. J., Marra M. A. (2009). Circos: an information aesthetic for comparative genomics. Genome Res 19, 16391645. [View Article][PubMed] [Google Scholar]
  39. Lechardeur D., Cesselin B., Fernandez A., Lamberet G., Garrigues C., Pedersen M., Gaudu P., Gruss A. (2011). Using heme as an energy boost for lactic acid bacteria. Curr Opin Biotechnol 22, 143149. [View Article][PubMed] [Google Scholar]
  40. Leemhuis H., Pijning T., Dobruchowska J. M., van Leeuwen S. S., Kralj S., Dijkstra B. W., Dijkhuizen L. (2013). Glucansucrases: three-dimensional structures, reactions, mechanism, α-glucan analysis and their implications in biotechnology and food applications. J Biotechnol 163, 250272. [View Article][PubMed] [Google Scholar]
  41. Lu Z., Pérez-Díaz I. M., Hayes J. S., Breidt F. (2012). Bacteriophage ecology in a commercial cucumber fermentation. Appl Environ Microbiol 78, 85718578. [View Article][PubMed] [Google Scholar]
  42. Lynch K. M., McSweeney P. L. H., Arendt E. K., Uniacke-Lowe T., Galle S., Coffey A. (2014). Isolation and characterisation of exopolysaccharide-producing Weissella and Lactobacillus and their application as adjunct cultures in Cheddar cheese. Int Dairy J 34, 125134. [View Article] [Google Scholar]
  43. Magnusson J., Jonsson H., Schnürer J., Roos S. (2002). Weissella soli sp. nov., a lactic acid bacterium isolated from soil. Int J Syst Evol Microbiol 52, 831834. [View Article][PubMed] [Google Scholar]
  44. Makarova K., Slesarev A., Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V. et al. (2006). Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A 103, 1561115616. [View Article][PubMed] [Google Scholar]
  45. Malang S. K., Maina N. H., Schwab C., Tenkanen M., Lacroix C. (2015). Characterization of exopolysaccharide and ropy capsular polysaccharide formation by Weissella . Food Microbiol 46, 418427. [View Article][PubMed] [Google Scholar]
  46. Markowitz V. M., Chen I. M., Palaniappan K., Chu K., Szeto E., Grechkin Y., Ratner A., Jacob B., Huang J. et al. (2012). IMG: the Integrated Microbial Genomes database and comparative analysis system. Nucleic Acids Res 40 (Database issue), D115D122. [View Article][PubMed] [Google Scholar]
  47. Monsan P., Bozonnet S., Albenne C., Joucla G., Willemot R.-M., Remaud-Siméon M. (2001). Homopolysaccharides from lactic acid bacteria. Int Dairy J 11, 675685. [View Article] [Google Scholar]
  48. Moriya Y., Itoh M., Okuda S., Yoshizawa A. C., Kanehisa M. (2007). KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35 (Web Server issue), W182W185. [View Article][PubMed] [Google Scholar]
  49. Park M. S., Kim S. H., Kim J. D., Oh S. E., Park K. J., Lee S. K., Ji G. E., Jung Y. H., Kim S. Y. (2007). Molecular characterization of plasmid DNA from Weissella cibaria isolated from Kimchi. Korean J Genet 29, 2935. [Google Scholar]
  50. Pophaly S. D., Singh R., Pophaly S. D., Kaushik J. K., Tomar S. K. (2012). Current status and emerging role of glutathione in food grade lactic acid bacteria. Microb Cell Fact 11, 114.[CrossRef] [Google Scholar]
  51. Powell S., Forslund K., Szklarczyk D., Trachana K., Roth A., Huerta-Cepas J., Gabaldón T., Rattei T., Creevey C. et al. (2014). eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res 42 (Database issue), D231D239. [View Article][PubMed] [Google Scholar]
  52. Pringsulaka O., Patarasinpaiboon N., Suwannasai N., Atthakor W., Rangsiruji A. (2011). Isolation and characterisation of a novel Podoviridae-phage infecting Weissella cibaria N 22 from Nham, a Thai fermented pork sausage. Food Microbiol 28, 518525. [View Article][PubMed] [Google Scholar]
  53. Pringsulaka O., Thongngam N., Suwannasai N., Atthakor W., Pothivejkul K., Rangsiruji A. (2012). Partial characterisation of bacteriocins produced by lactic acid bacteria isolated from Thai fermented meat and fish products. Food Contr 23, 547551. [View Article] [Google Scholar]
  54. Ruas-Madiedo P., Salazar N., de los Reyes-Gavilan C. (2009). Biosynthesis and chemical composition of exopolysaccharides produced by lactic acid bacteria. In Bacterial Polysaccharides: Current Innovations and Future Trends, pp. 279310. Edited by Ullrich M. . Norwich, UK: Caister Academic Press. [Google Scholar]
  55. Saier M. H. Jr, Reddy V. S., Tamang D. G., Västermark A. (2014). The transporter classification database. Nucleic Acids Res 42 (Database issue), D251D258. [View Article][PubMed] [Google Scholar]
  56. Saitou N., Nei M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406425.[PubMed] [Google Scholar]
  57. Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 20682069. [View Article][PubMed] [Google Scholar]
  58. Shareck J., Choi Y., Lee B., Miguez C. B. (2004). Cloning vectors based on cryptic plasmids isolated from lactic acid bacteria: their characteristics and potential applications in biotechnology. Crit Rev Biotechnol 24, 155208. [View Article][PubMed] [Google Scholar]
  59. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. (2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539. [View Article][PubMed] [Google Scholar]
  60. Sijpesteijn A. K. (1970). Induction of cytochrome formation and stimulation of oxidative dissimilation by hemin in Streptococcus lactis and Leuconostoc mesenteroides . Antonie van Leeuwenhoek 36, 335348. [View Article][PubMed] [Google Scholar]
  61. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. (2013). mega6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30, 27252729. [View Article][PubMed] [Google Scholar]
  62. Tatusov R. L., Fedorova N. D., Jackson J. D., Jacobs A. R., Kiryutin B., Koonin E. V., Krylov D. M., Mazumder R., Mekhedov S. L. et al. (2003). The COG database: an updated version includes eukaryotes. BMC Bioinformatics 4, 41. [View Article][PubMed] [Google Scholar]
  63. Tettelin H., Masignani V., Cieslewicz M. J., Donati C., Medini D., Ward N. L., Angiuoli S. V., Crabtree J., Jones A. L. et al. (2005). Genome analysis of multiple pathogenic isolates of Streptococcus agalactiae: implications for the microbial ‘pan-genome’. Proc Natl Acad Sci U S A 102, 1395013955. [View Article][PubMed] [Google Scholar]
  64. Tieking M., Kaditzky S., Valcheva R., Korakli M., Vogel R. F., Gänzle M. G. (2005). Extracellular homopolysaccharides and oligosaccharides from intestinal lactobacilli. J Appl Microbiol 99, 692702. [View Article][PubMed] [Google Scholar]
  65. Trotter M., McAuliffe O., Callanan M., Edwards R., Fitzgerald G. F., Coffey A., Ross R. P. (2006). Genome analysis of the obligately lytic bacteriophage 4268 of Lactococcus lactis provides insight into its adaptable nature. Gene 366, 189199. [View Article][PubMed] [Google Scholar]
  66. Van der Meulen R., Grosu-Tudor S., Mozzi F., Vaningelgem F., Zamfir M., Font de Valdez G., De Vuyst L. (2007). Screening of lactic acid bacteria isolates from dairy and cereal products for exopolysaccharide production and genes involved. Int J Food Microbiol 118, 250258. [View Article][PubMed] [Google Scholar]
  67. Vogel R. F., Pavlovic M., Ehrmann M. A., Wiezer A., Liesegang H., Offschanka S., Voget S., Angelov A., Böcker G., Liebl W. (2011). Genomic analysis reveals Lactobacillus sanfranciscensis as stable element in traditional sourdoughs. Microb Cell Fact 10 (Suppl 1), S6. [View Article][PubMed] [Google Scholar]
  68. Wassenaar T. M., Lukjancenko O. (2014). Comparative genomics of Lactobacillus and other LAB. In Lactic Acid Bacteria: Biodiversity and Taxonomy, pp. 5569. Edited by Holzapfel W. H., Wood B. . Chichester: Wiley-Blackwell. [View Article] [Google Scholar]
  69. Wolter A., Hager A. S., Zannini E., Galle S., Gänzle M. G., Waters D. M., Arendt E. K. (2014). Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours. Food Microbiol 37, 4450. [View Article][PubMed] [Google Scholar]
  70. Yu N. Y., Wagner J. R., Laird M. R., Melli G., Rey S., Lo R., Dao P., Sahinalp S. C., Ester M. et al. (2010). PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26, 16081615. [View Article][PubMed] [Google Scholar]
  71. Zannini E., Pontonio E., Waters D. M., Arendt E. K. (2012). Applications of microbial fermentations for production of gluten-free products and perspectives. Appl Microbiol Biotechnol 93, 473485. [View Article][PubMed] [Google Scholar]
  72. Zannini E., Mauch A., Galle S., Gänzle M., Coffey A., Arendt E. K., Taylor J. P., Waters D. M. (2013). Barley malt wort fermentation by exopolysaccharide-forming Weissella cibaria MG1 for the production of a novel beverage. J Appl Microbiol 115, 13791387. [View Article][PubMed] [Google Scholar]
  73. Zhou M., Theunissen D., Wels M., Siezen R. J. (2010). LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of lactic acid bacteria. BMC Genomics 11, 651. [View Article][PubMed] [Google Scholar]
  74. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S. (2011). PHAST: a fast phage search tool. Nucleic Acids Res 39 (Web Server issue), W347W352. [View Article][PubMed] [Google Scholar]

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error