1887

Abstract

(Mtb) owes its success as a pathogen in large measure to its ability to exist in a persistent state of ‘dormancy’ resulting in a lifelong latent tuberculosis (TB) infection. An understanding of bacterial adaptation during dormancy will help in devising approaches to counter latent TB infection. models have provided valuable insights into bacterial adaptation; however, they have limitations because they do not disclose the bacterial response to the intracellular environment wherein the bacteria are simultaneously exposed to multiple stresses. We describe the pleiotropic response of Mtb in the vitamin C (vit C) model of dormancy developed in our laboratory. Vit C mediates a rapid regulation of genes representing ~14 % of the genome in Mtb cultures. The upregulated genes were better represented in lipid, intermediary metabolism and regulatory protein categories. The downregulated genes mainly related to virulence, detoxification, information pathways and cell wall processes. A comparison of this response to that in other models indicates that vit C generates a multiple-stress environment for axenic Mtb cultures that resembles a macrophage-like environment. The bacterial response to vit C resembles responses to gaseous stresses such as hypoxia and nitric oxide, oxidative and nitrosative stresses, nutrient starvation and, notably, the activated macrophage environment itself. These responses demonstrate that the influence of vit C on Mtb gene expression extends well beyond the DevR dormancy regulon. A detailed characterization of the response to vit C is expected to disclose useful strategies to counter the adaptive mechanisms essential to Mtb dormancy.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000049
2015-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/739.html?itemId=/content/journal/micro/10.1099/mic.0.000049&mimeType=html&fmt=ahah

References

  1. Argüello J. M. , Eren E. , González-Guerrero M. . ( 2007; ). The structure and function of heavy metal transport P1B-ATPases. . Biometals 20:, 233–248. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arruda S. , Bomfim G. , Knights R. , Huima-Byron T. , Riley L. W. . ( 1993; ). Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. . Science 261:, 1454–1457. [CrossRef] [PubMed]
    [Google Scholar]
  3. Barry C. E. , Crick D. C. , McNeil M. R. . ( 2007; ). Targeting the formation of the cell wall core of M. tuberculosis . . Infect Disord Drug Targets 7:, 182–202. [CrossRef] [PubMed]
    [Google Scholar]
  4. Behr M. A. , Schroeder B. G. , Brinkman J. N. , Slayden R. A. , Barry C. E. III . ( 2000; ). A point mutation in the mma3 gene is responsible for impaired methoxymycolic acid production in Mycobacterium bovis BCG strains obtained after 1927. . J Bacteriol 182:, 3394–3399. [CrossRef] [PubMed]
    [Google Scholar]
  5. Betts J. C. , Lukey P. T. , Robb L. C. , McAdam R. A. , Duncan K. . ( 2002; ). Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. . Mol Microbiol 43:, 717–731. [CrossRef] [PubMed]
    [Google Scholar]
  6. Biswas T. , Tsodikov O. V. . ( 2008; ). Hexameric ring structure of the N-terminal domain of Mycobacterium tuberculosis DnaB helicase. . FEBS J 275:, 3064–3071. [CrossRef] [PubMed]
    [Google Scholar]
  7. Boshoff H. I. , Myers T. G. , Copp B. R. , McNeil M. R. , Wilson M. A. , Barry C. E. III . ( 2004; ). The transcriptional responses of Mycobacterium tuberculosis to inhibitors of metabolism: novel insights into drug mechanisms of action. . J Biol Chem 279:, 40174–40184. [CrossRef] [PubMed]
    [Google Scholar]
  8. Bryk R. , Lima C. D. , Erdjument-Bromage H. , Tempst P. , Nathan C. . ( 2002; ). Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. . Science 295:, 1073–1077. [CrossRef] [PubMed]
    [Google Scholar]
  9. Casali N. , White A. M. , Riley L. W. . ( 2006; ). Regulation of the Mycobacterium tuberculosis mce1 operon. . J Bacteriol 188:, 441–449. [CrossRef] [PubMed]
    [Google Scholar]
  10. Chauhan S. , Tyagi J. S. . ( 2008; ). Cooperative binding of phosphorylated DevR to upstream sites is necessary and sufficient for activation of the Rv3134c-devRS operon in Mycobacterium tuberculosis: implication in the induction of DevR target genes. . J Bacteriol 190:, 4301–4312. [CrossRef] [PubMed]
    [Google Scholar]
  11. Chauhan A. , Madiraju M. V. , Fol M. , Lofton H. , Maloney E. , Reynolds R. , Rajagopalan M. . ( 2006; ). Mycobacterium tuberculosis cells growing in macrophages are filamentous and deficient in FtsZ rings. . J Bacteriol 188:, 1856–1865. [CrossRef] [PubMed]
    [Google Scholar]
  12. De Majumdar S. D. , Vashist A. , Dhingra S. , Gupta R. , Singh A. , Challu V. K. , Ramanathan V. D. , Kumar P. , Tyagi J. S. . ( 2012; ). Appropriate DevR (DosR)-mediated signaling determines transcriptional response, hypoxic viability and virulence of Mycobacterium tuberculosis . . PLoS ONE 7:, e35847. [CrossRef] [PubMed]
    [Google Scholar]
  13. Deb C. , Lee C. M. , Dubey V. S. , Daniel J. , Abomoelak B. , Sirakova T. D. , Pawar S. , Rogers L. , Kolattukudy P. E. . ( 2009; ). A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. . PLoS ONE 4:, e6077. [CrossRef] [PubMed]
    [Google Scholar]
  14. Fahey R. C. . ( 2001; ). Novel thiols of prokaryotes. . Annu Rev Microbiol 55:, 333–356. [CrossRef] [PubMed]
    [Google Scholar]
  15. Fisher M. A. , Plikaytis B. B. , Shinnick T. M. . ( 2002; ). Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. . J Bacteriol 184:, 4025–4032. [CrossRef] [PubMed]
    [Google Scholar]
  16. Flesselles B. , Anand N. N. , Remani J. , Loosmore S. M. , Klein M. H. . ( 1999; ). Disruption of the mycobacterial cell entry gene of Mycobacterium bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. . FEMS Microbiol Lett 177:, 237–242. [CrossRef] [PubMed]
    [Google Scholar]
  17. Florczyk M. A. , McCue L. A. , Purkayastha A. , Currenti E. , Wolin M. J. , McDonough K. A. . ( 2003; ). A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. . Infect Immun 71:, 5332–5343. [CrossRef] [PubMed]
    [Google Scholar]
  18. Gentle, T. M., Jr & Yeh, M. (1999). Composition for the detection of microorganisms in sample. US Patent 5998517.
  19. Ghodbane R. , Raoult D. , Drancourt M. . ( 2014; ). Dramatic reduction of culture time of Mycobacterium tuberculosis . . Scient Rep 4:, 4236. [CrossRef] [PubMed]
    [Google Scholar]
  20. Goulding C. W. , Bowers P. M. , Segelke B. , Lekin T. , Kim C. Y. , Terwilliger T. C. , Eisenberg D. . ( 2007; ). The structure and computational analysis of Mycobacterium tuberculosis protein CitE suggest a novel enzymatic function. . J Mol Biol 365:, 275–283. [CrossRef] [PubMed]
    [Google Scholar]
  21. Graham J. E. , Clark-Curtiss J. E. . ( 1999; ). Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS). . Proc Natl Acad Sci U S A 96:, 11554–11559. [CrossRef] [PubMed]
    [Google Scholar]
  22. Graña M. , Bellinzoni M. , Bellalou J. , Haouz A. , Miras I. , Buschiazzo A. , Winter N. , Alzari P. M. . ( 2010; ). Crystal structure of Mycobacterium tuberculosis LppA, a lipoprotein confined to pathogenic mycobacteria. . Proteins 78:, 769–772.[PubMed]
    [Google Scholar]
  23. Hampshire T. , Soneji S. , Bacon J. , James B. W. , Hinds J. , Laing K. , Stabler R. A. , Marsh P. D. , Butcher P. D. . ( 2004; ). Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms?. Tuberculosis (Edinb) 84:, 228–238. [CrossRef] [PubMed]
    [Google Scholar]
  24. Hemila H. , Kaprio J. , Pietinen P. , Albanes D. , Helnonen O. P. . ( 1999; ). Vitamin C and other compounds in vitamin C rich food in relation to risk of tuberculosis in male smokers. . Am J Epidemiol 150:, 632–641. [CrossRef] [PubMed]
    [Google Scholar]
  25. Högbom M. , Stenmark P. , Voevodskaya N. , McClarty G. , Gräslund A. , Nordlund P. . ( 2004; ). The radical site in chlamydial ribonucleotide reductase defines a new R2 subclass. . Science 305:, 245–248. [CrossRef] [PubMed]
    [Google Scholar]
  26. Honaker R. W. , Dhiman R. K. , Narayanasamy P. , Crick D. C. , Voskuil M. I. . ( 2010; ). DosS responds to a reduced electron transport system to induce the Mycobacterium tuberculosis DosR regulon. . J Bacteriol 192:, 6447–6455. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hu Y. M. , Butcher P. D. , Sole K. , Mitchison D. A. , Coates A. R. . ( 1998; ). Protein synthesis is shutdown in dormant Mycobacterium tuberculosis and is reversed by oxygen or heat shock. . FEMS Microbiol Lett 158:, 139–145. [CrossRef] [PubMed]
    [Google Scholar]
  28. Jariwalla R. J. , Harakeh S. . ( 1996; ). Antiviral and immunomodulatory activities of ascorbic acid. . Subcell Biochem 25:, 213–231.[PubMed]
    [Google Scholar]
  29. Kang C. M. , Abbott D. W. , Park S. T. , Dascher C. C. , Cantley L. C. , Husson R. N. . ( 2005; ). The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. . Genes Dev 19:, 1692–1704. [CrossRef] [PubMed]
    [Google Scholar]
  30. Kumar A. , Toledo J. C. , Patel R. P. , Lancaster J. R. Jr , Steyn A. J. . ( 2007; ). Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. . Proc Natl Acad Sci U S A 104:, 11568–11573. [CrossRef] [PubMed]
    [Google Scholar]
  31. Kumar A. , Deshane J. S. , Crossman D. K. , Bolisetty S. , Yan B. S. , Kramnik I. , Agarwal A. , Steyn A. J. . ( 2008; ). Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. . J Biol Chem 283:, 18032–18039. [CrossRef] [PubMed]
    [Google Scholar]
  32. Loebel R. O. , Shorr E. , Richardson H. B. . ( 1933; ). The influence of adverse conditions upon the respiratory metabolism and growth of human tubercle bacilli. . J Bacteriol 26:, 167–200.[PubMed]
    [Google Scholar]
  33. Malhotra V. , Okon B. P. , Clark-Curtiss J. E. . ( 2012; ). Mycobacterium tuberculosis protein kinase K enables growth adaptation through translation control. . J Bacteriol 194:, 4184–4196. [CrossRef] [PubMed]
    [Google Scholar]
  34. Malm S. , Tiffert Y. , Micklinghoff J. , Schultze S. , Joost I. , Weber I. , Horst S. , Ackermann B. , Schmidt M. et al. ( 2009; ). The roles of the nitrate reductase NarGHJI, the nitrite reductase NirBD and the response regulator GlnR in nitrate assimilation of Mycobacterium tuberculosis . . Microbiology 155:, 1332–1339. [CrossRef] [PubMed]
    [Google Scholar]
  35. Mandl J. , Szarka A. , Bánhegyi G. . ( 2009; ). Vitamin C: update on physiology and pharmacology. . Br J Pharmacol 157:, 1097–1110. [CrossRef] [PubMed]
    [Google Scholar]
  36. Manganelli R. , Voskuil M. I. , Schoolnik G. K. , Smith I. . ( 2001; ). The Mycobacterium tuberculosis ECF sigma factor σE: role in global gene expression and survival in macrophages. . Mol Microbiol 41:, 423–437. [CrossRef] [PubMed]
    [Google Scholar]
  37. Marrero J. , Rhee K. Y. , Schnappinger D. , Pethe K. , Ehrt S. . ( 2010; ). Gluconeogenic carbon flow of tricarboxylic acid cycle intermediates is critical for Mycobacterium tuberculosis to establish and maintain infection. . Proc Natl Acad Sci U S A 107:, 9819–9824. [CrossRef] [PubMed]
    [Google Scholar]
  38. McConkey M. , Smith D. T. . ( 1933; ). The relation of vitamin C deficiency to intestinal tuberculosis in the guinea pig. . J Exp Med 58:, 503–512. [CrossRef] [PubMed]
    [Google Scholar]
  39. McKinney J. D. , zu Bentrup K. H. , Muñoz-Elías E. J. , Miczak A. , Chen B. , Chan W.-T. , Swenson D. , Sacchettini J. C. , Jacobs W. R. Jr , Russell D. G. . ( 2000; ). Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. . Nature 406:, 735–738. [CrossRef] [PubMed]
    [Google Scholar]
  40. Monahan I. M. , Mangan J. A. , Butcher P. D. . ( 2001; ). Extraction of RNA from intracellular Mycobacterium tuberculosis: methods, considerations and applications. . Methods Molec Med, 54:, 31–42. [CrossRef] [PubMed]
    [Google Scholar]
  41. Movahedzadeh F. , Smith D. A. , Norman R. A. , Dinadayala P. , Murray-Rust J. , Russell D. G. , Kendall S. L. , Rison S. C. , McAlister M. S. et al. ( 2004; ). The Mycobacterium tuberculosis ino1 gene is essential for growth and virulence. . Mol Microbiol 51:, 1003–1014. [CrossRef] [PubMed]
    [Google Scholar]
  42. Mulder M. A. , Zappe H. , Steyn L. M. . ( 1999; ). The Mycobacterium tuberculosis katG promoter region contains a novel upstream activator. . Microbiology 145:, 2507–2518.[PubMed] [CrossRef]
    [Google Scholar]
  43. Muñoz-Elías E. J. , McKinney J. D. . ( 2006; ). Carbon metabolism of intracellular bacteria. . Cell Microbiol 8:, 10–22. [CrossRef] [PubMed]
    [Google Scholar]
  44. Muñoz-Elías E. J. , Timm J. , Botha T. , Chan W. T. , Gomez J. E. , McKinney J. D. . ( 2005; ). Replication dynamics of Mycobacterium tuberculosis in chronically infected mice. . Infect Immun 73:, 546–551. [CrossRef] [PubMed]
    [Google Scholar]
  45. Muttucumaru D. G. , Roberts G. , Hinds J. , Stabler R. A. , Parish T. . ( 2004; ). Gene expression profile of Mycobacterium tuberculosis in a non-replicating state. . Tuberculosis (Edinb) 84:, 239–246. [CrossRef] [PubMed]
    [Google Scholar]
  46. Ohno H. , Zhu G. , Mohan V. P. , Chu D. , Kohno S. , Jacobs W. R. Jr , Chan J. . ( 2003; ). The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis . . Cell Microbiol 5:, 637–648. [CrossRef] [PubMed]
    [Google Scholar]
  47. Okuyama H. , Kankura T. , Nojima S. . ( 1967; ). Positional distribution of fatty acids in phospholipids from mycobacteria. . J Biochem 61:, 732–737.[PubMed]
    [Google Scholar]
  48. Parish T. , Smith D. A. , Kendall S. , Casali N. , Bancroft G. J. , Stoker N. G. . ( 2003; ). Deletion of two-component regulatory systems increases the virulence of Mycobacterium tuberculosis . . Infect Immun 71:, 1134–1140. [CrossRef] [PubMed]
    [Google Scholar]
  49. Park H. D. , Guinn K. M. , Harrell M. I. , Liao R. , Voskuil M. I. , Tompa M. , Schoolnik G. K. , Sherman D. R. . ( 2003; ). Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis . . Mol Microbiol 48:, 833–843. [CrossRef] [PubMed]
    [Google Scholar]
  50. Pinto R. , Tang Q. X. , Britton W. J. , Leyh T. S. , Triccas J. A. . ( 2004; ). The Mycobacterium tuberculosis cysD and cysNC genes form a stress-induced operon that encodes a tri-functional sulfate-activating complex. . Microbiology 150:, 1681–1686. [CrossRef] [PubMed]
    [Google Scholar]
  51. Raman S. , Song T. , Puyang X. , Bardarov S. , Jacobs W. R. Jr , Husson R. N. . ( 2001; ). The alternative sigma factor SigH regulates major components of oxidative and heat stress responses in Mycobacterium tuberculosis . . J Bacteriol 183:, 6119–6125. [CrossRef] [PubMed]
    [Google Scholar]
  52. Roberts D. M. , Liao R. P. , Wisedchaisri G. , Hol W. G. , Sherman D. R. . ( 2004; ). Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis . . J Biol Chem 279:, 23082–23087. [CrossRef] [PubMed]
    [Google Scholar]
  53. Rohde K. H. , Abramovitch R. B. , Russell D. G. . ( 2007; ). Mycobacterium tuberculosis invasion of macrophages: linking bacterial gene expression to environmental cues. . Cell Host Microbe 2:, 352–364. [CrossRef] [PubMed]
    [Google Scholar]
  54. Rohde K. H. , Veiga D. F. T. , Caldwell S. , Balázsi G. , Russell D. G. . ( 2012; ). Linking the transcriptional profiles and the physiological states of Mycobacterium tuberculosis during an extended intracellular infection. . PLoS Pathog 8:, e1002769. [CrossRef] [PubMed]
    [Google Scholar]
  55. Rowland J. L. , Niederweis M. . ( 2012; ). Resistance mechanisms of Mycobacterium tuberculosis against phagosomal copper overload. . Tuberculosis (Edinb) 92:, 202–210. [CrossRef] [PubMed]
    [Google Scholar]
  56. Russell D. G. . ( 2011; ). Mycobacterium tuberculosis and the intimate discourse of a chronic infection. . Immunol Rev 240:, 252–268. [CrossRef] [PubMed]
    [Google Scholar]
  57. Rustad T. R. , Harrell M. I. , Liao R. , Sherman D. R. . ( 2008; ). The enduring hypoxic response of Mycobacterium tuberculosis . . PLoS ONE 3:, e1502. [CrossRef] [PubMed]
    [Google Scholar]
  58. Saini D. K. , Malhotra V. , Dey D. , Pant N. , Das T. K. , Tyagi J. S. . ( 2004; ). DevR–DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. . Microbiology 150:, 865–875. [CrossRef] [PubMed]
    [Google Scholar]
  59. Sala C. , Forti F. , Di Florio E. , Canneva F. , Milano A. , Riccardi G. , Ghisotti D. . ( 2003; ). Mycobacterium tuberculosis FurA autoregulates its own expression. . J Bacteriol 185:, 5357–5362. [CrossRef] [PubMed]
    [Google Scholar]
  60. Scarpa M. , Stevanato R. , Viglino P. , Rigo A. . ( 1983; ). Superoxide ion as active intermediate in the autoxidation of ascorbate by molecular oxygen. Effect of superoxide dismutase. . J Biol Chem 258:, 6695–6697.[PubMed]
    [Google Scholar]
  61. Schnappinger D. , Ehrt S. , Voskuil M. I. , Liu Y. , Mangan J. A. , Monahan I. M. , Dolganov G. , Efron B. , Butcher P. D. et al. ( 2003; ). Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: insights into the phagosomal environment. . J Exp Med 198:, 693–704. [CrossRef] [PubMed]
    [Google Scholar]
  62. Sherman D. R. , Voskuil M. , Schnappinger D. , Liao R. , Harrell M. I. , Schoolnik G. K. . ( 2001; ). Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding α-crystallin. . Proc Natl Acad Sci U S A 98:, 7534–7539. [CrossRef] [PubMed]
    [Google Scholar]
  63. Sikri K. , Tyagi J. S. . ( 2013; ). The evolution of Mycobacterium tuberculosis dormancy models. . Curr Sci 105:, 607–616.
    [Google Scholar]
  64. Sohaskey C. D. , Wayne L. G. . ( 2003; ). Role of narK2X and narGHJI in hypoxic upregulation of nitrate reduction by Mycobacterium tuberculosis . . J Bacteriol 185:, 7247–7256. [CrossRef] [PubMed]
    [Google Scholar]
  65. Sousa E. H. , Tuckerman J. R. , Gonzalez G. , Gilles-Gonzalez M. A. . ( 2007; ). DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis . . Protein Sci 16:, 1708–1719. [CrossRef] [PubMed]
    [Google Scholar]
  66. Starck J. , Källenius G. , Marklund B. I. , Andersson D. I. , Akerlund T. . ( 2004; ). Comparative proteome analysis of Mycobacterium tuberculosis grown under aerobic and anaerobic conditions. . Microbiology 150:, 3821–3829. [CrossRef] [PubMed]
    [Google Scholar]
  67. Stewart G. R. , Snewin V. A. , Walzl G. , Hussell T. , Tormay P. , O’Gaora P. , Goyal M. , Betts J. , Brown I. N. , Young D. B. . ( 2001; ). Overexpression of heat-shock proteins reduces survival of Mycobacterium tuberculosis in the chronic phase of infection. . Nat Med 7:, 732–737. [CrossRef] [PubMed]
    [Google Scholar]
  68. Stewart G. R. , Wernisch L. , Stabler R. , Mangan J. A. , Hinds J. , Laing K. G. , Young D. B. , Butcher P. D. . ( 2002; ). Dissection of the heat-shock response in Mycobacterium tuberculosis using mutants and microarrays. . Microbiology 148:, 3129–3138.[PubMed]
    [Google Scholar]
  69. Sulzenbacher G. , Canaan S. , Bordat Y. , Neyrolles O. , Stadthagen G. , Roig-Zamboni V. , Rauzier J. , Maurin D. , Laval F. et al. ( 2006; ). LppX is a lipoprotein required for the translocation of phthiocerol dimycocerosates to the surface of Mycobacterium tuberculosis . . EMBO J 25:, 1436–1444. [CrossRef] [PubMed]
    [Google Scholar]
  70. Taneja N. K. , Dhingra S. , Mittal A. , Naresh M. , Tyagi J. S. . ( 2010; ). Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. . PLoS ONE 5:, e10860. [CrossRef] [PubMed]
    [Google Scholar]
  71. Vilchèze C. , Hartman T. , Weinrick B. , Jacobs W. R. Jr . ( 2013; ). Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. . Nat Commun 4:, 1881. [CrossRef] [PubMed]
    [Google Scholar]
  72. Voskuil M. I. , Schnappinger D. , Visconti K. C. , Harrell M. I. , Dolganov G. M. , Sherman D. R. , Schoolnik G. K. . ( 2003; ). Inhibition of respiration by nitric oxide induces a Mycobacterium tuberculosis dormancy program. . J Exp Med 198:, 705–713. [CrossRef] [PubMed]
    [Google Scholar]
  73. Voskuil M. I. , Visconti K. C. , Schoolnik G. K. . ( 2004; ). Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. . Tuberculosis (Edinb) 84:, 218–227. [CrossRef] [PubMed]
    [Google Scholar]
  74. Voskuil M. I. , Bartek I. L. , Visconti K. , Schoolnik G. K. . ( 2011; ). The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. . Front Microbiol 2:, 105. [CrossRef] [PubMed]
    [Google Scholar]
  75. Walker R. W. , Barakat H. , Hung J. G. . ( 1970; ). The positional distribution of fatty acids in the phospholipids and triglycerides of Mycobacterium smegmatis and M. bovis BCG. . Lipids 5:, 684–691. [CrossRef] [PubMed]
    [Google Scholar]
  76. Ward S. K. , Abomoelak B. , Hoye E. A. , Steinberg H. , Talaat A. M. . ( 2010; ). CtpV: a putative copper exporter required for full virulence of Mycobacterium tuberculosis . . Mol Microbiol 77:, 1096–1110. [CrossRef] [PubMed]
    [Google Scholar]
  77. Wayne L. G. . ( 1976; ). Dynamics of submerged growth of Mycobacterium tuberculosis under aerobic and microaerophilic conditions. . Am Rev Respir Dis 114:, 807–811.[PubMed]
    [Google Scholar]
  78. Wayne L. G. , Diaz G. A. . ( 1967; ). Autolysis and secondary growth of Mycobacterium tuberculosis in submerged culture. . J Bacteriol 93:, 1374–1381.[PubMed]
    [Google Scholar]
  79. Wayne L. G. , Hayes L. G. . ( 1996; ). An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. . Infect Immun 64:, 2062–2069.[PubMed]
    [Google Scholar]
  80. Wong D. , Bach H. , Sun J. , Hmama Z. , Av-Gay Y. . ( 2011; ). Mycobacterium tuberculosis protein tyrosine phosphatase (PtpA) excludes host vacuolar-H+-ATPase to inhibit phagosome acidification. . Proc Natl Acad Sci U S A 108:, 19371–19376. [CrossRef] [PubMed]
    [Google Scholar]
  81. Yamamoto K. , Muniruzzaman S. , Rajagopalan M. , Madiraju M. V. . ( 2002; ). Modulation of Mycobacterium tuberculosis DnaA protein–adenine-nucleotide interactions by acidic phospholipids. . Biochem J 363:, 305–311. [CrossRef] [PubMed]
    [Google Scholar]
  82. Yuan Y. , Crane D. D. , Simpson R. M. , Zhu Y. Q. , Hickey M. J. , Sherman D. R. , Barry C. E. III . ( 1998; ). The 16-kDa α-crystallin (Acr) protein of Mycobacterium tuberculosis is required for growth in macrophages. . Proc Natl Acad Sci U S A 95:, 9578–9583. [CrossRef] [PubMed]
    [Google Scholar]
  83. zu Bentrup K. H. , Russell D. G. . ( 2001; ). Mycobacterial persistence: adaptation to a changing environment. . Trends Microbiol 9:, 597–605. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000049
Loading
/content/journal/micro/10.1099/mic.0.000049
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error