1887

Abstract

In prokaryotes, a conserved small RNA molecule, called tmRNA, rescues ribosomes from proteins that are abnormally truncated due to the presence of rare codons or degraded mRNA. During the rescue process, a peptide tag (SsrA) encoded by tmRNA is cotranslationally added to the truncated polypeptides, thereby targeting these proteins for proteolytic degradation. In , ClpXP and ClpAP proteases primarily degrade SsrA-tagged proteins. Other proteases such as Lon and FtsH also participate in the degradation in . However, in , ClpXP is the major protease that degrades the SsrA-tagged proteins. Degradation of SsrA-tagged protein in streptococci is not well understood except that ClpXP is responsible for the majority of the degradation. Here we show that in , in addition to ClpXP, two other Clp complexes, ClpCP and ClpEP, are also involved in the degradation. We also found that ClpCP- and ClpEP-mediated proteolysis of SsrA-tagged substrates is induced by heat stress. As ClpCP and ClpEP proteins are highly conserved in streptococci, we predicted that ClpEP- and ClpCP-mediated degradation of SsrA-tagged proteins might be operational in other streptococci.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000048
2015-04-01
2019-12-05
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/884.html?itemId=/content/journal/micro/10.1099/mic.0.000048&mimeType=html&fmt=ahah

References

  1. Ahlawat S., Morrison D. A.. ( 2009;). ClpXP degrades SsrA-tagged proteins in Streptococcus pneumoniae. . J Bacteriol 191:, 2894–2898. [CrossRef][PubMed]
    [Google Scholar]
  2. Ajdić D., McShan W. M., McLaughlin R. E., Savić G., Chang J., Carson M. B., Primeaux C., Tian R., Kenton S. et al. ( 2002;). Genome sequence of Streptococcus mutans UA159, a cariogenic dental pathogen. . Proc Natl Acad Sci U S A 99:, 14434–14439. [CrossRef][PubMed]
    [Google Scholar]
  3. Andersson F. I., Blakytny R., Kirstein J., Turgay K., Bukau B., Mogk A., Clarke A. K.. ( 2006;). Cyanobacterial ClpC/HSP100 protein displays intrinsic chaperone activity. . J Biol Chem 281:, 5468–5475. [CrossRef][PubMed]
    [Google Scholar]
  4. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H.. ( 2006;). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. . Mol Syst Biol 2:, 0008. [CrossRef][PubMed]
    [Google Scholar]
  5. Banerjee A., Biswas I.. ( 2008;). Markerless multiple-gene-deletion system for Streptococcus mutans. . Appl Environ Microbiol 74:, 2037–2042. [CrossRef][PubMed]
    [Google Scholar]
  6. Bewley M. C., Graziano V., Griffin K., Flanagan J. M.. ( 2009;). Turned on for degradation: ATPase-independent degradation by ClpP. . J Struct Biol 165:, 118–125. [CrossRef][PubMed]
    [Google Scholar]
  7. Biswas S., Biswas I.. ( 2006;). Regulation of the glucosyltransferase (gtfBC) operon by CovR in Streptococcus mutans. . J Bacteriol 188:, 988–998. [CrossRef][PubMed]
    [Google Scholar]
  8. Biswas I., Drake L., Johnson S., Thielen D.. ( 2007;). Unmarked gene modification in Streptococcus mutans by a cotransformation strategy with a thermosensitive plasmid. . Biotechniques 42:, 487–490. [CrossRef][PubMed]
    [Google Scholar]
  9. Biswas I., Jha J. K., Fromm N.. ( 2008;). Shuttle expression plasmids for genetic studies in Streptococcus mutans. . Microbiology 154:, 2275–2282. [CrossRef][PubMed]
    [Google Scholar]
  10. Boutry C., Wahl A., Delplace B., Clippe A., Fontaine L., Hols P.. ( 2012;). Adaptor protein MecA is a negative regulator of the expression of late competence genes in Streptococcus thermophilus. . J Bacteriol 194:, 1777–1788. [CrossRef][PubMed]
    [Google Scholar]
  11. Chatterjee I., Becker P., Grundmeier M., Bischoff M., Somerville G. A., Peters G., Sinha B., Harraghy N., Proctor R. A., Herrmann M.. ( 2005;). Staphylococcus aureus ClpC is required for stress resistance, aconitase activity, growth recovery, and death. . J Bacteriol 187:, 4488–4496. [CrossRef][PubMed]
    [Google Scholar]
  12. Chatterjee I., Schmitt S., Batzilla C. F., Engelmann S., Keller A., Ring M. W., Kautenburger R., Ziebuhr W., Hecker M. et al. ( 2009;). Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence. . Proteomics 9:, 1152–1176. [CrossRef][PubMed]
    [Google Scholar]
  13. Chatterjee I., Neumayer D., Herrmann M.. ( 2010;). Senescence of staphylococci: using functional genomics to unravel the roles of ClpC ATPase during late stationary phase. . Int J Med Microbiol 300:, 130–136. [CrossRef][PubMed]
    [Google Scholar]
  14. Choy J. S., Aung L. L., Karzai A. W.. ( 2007;). Lon protease degrades transfer-messenger RNA-tagged proteins. . J Bacteriol 189:, 6564–6571. [CrossRef][PubMed]
    [Google Scholar]
  15. Donegan N. P., Marvin J. S., Cheung A. L.. ( 2014;). Role of adaptor TrfA and ClpPC in controlling levels of SsrA-tagged proteins and antitoxins in Staphylococcus aureus. . J Bacteriol 196:, 4140–4151. [CrossRef][PubMed]
    [Google Scholar]
  16. Dunn A. K., Handelsman J.. ( 1999;). A vector for promoter trapping in Bacillus cereus. . Gene 226:, 297–305. [CrossRef][PubMed]
    [Google Scholar]
  17. Farrell C. M., Grossman A. D., Sauer R. T.. ( 2005;). Cytoplasmic degradation of ssrA-tagged proteins. . Mol Microbiol 57:, 1750–1761. [CrossRef][PubMed]
    [Google Scholar]
  18. Flynn J. M., Levchenko I., Seidel M., Wickner S. H., Sauer R. T., Baker T. A.. ( 2001;). Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. . Proc Natl Acad Sci U S A 98:, 10584–10589. [CrossRef][PubMed]
    [Google Scholar]
  19. Frees D., Savijoki K., Varmanen P., Ingmer H.. ( 2007;). Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. . Mol Microbiol 63:, 1285–1295. [CrossRef][PubMed]
    [Google Scholar]
  20. Ge Z., Karzai A. W.. ( 2009;). Co-evolution of multipartite interactions between an extended tmRNA tag and a robust Lon protease in Mycoplasma. . Mol Microbiol 74:, 1083–1099. [CrossRef][PubMed]
    [Google Scholar]
  21. Gottesman S., Roche E., Zhou Y., Sauer R. T.. ( 1998;). The ClpXP and ClpAP proteases degrade proteins with carboxy-terminal peptide tails added by the SsrA-tagging system. . Genes Dev 12:, 1338–1347. [CrossRef][PubMed]
    [Google Scholar]
  22. Graham J. W., Lei M. G., Lee C. Y.. ( 2013;). Trapping and identification of cellular substrates of the Staphylococcus aureus ClpC chaperone. . J Bacteriol 195:, 4506–4516. [CrossRef][PubMed]
    [Google Scholar]
  23. Gribun A., Kimber M. S., Ching R., Sprangers R., Fiebig K. M., Houry W. A.. ( 2005;). The ClpP double ring tetradecameric protease exhibits plastic ring–ring interactions, and the N termini of its subunits form flexible loops that are essential for ClpXP and ClpAP complex formation. . J Biol Chem 280:, 16185–16196. [CrossRef][PubMed]
    [Google Scholar]
  24. Griffith K. L., Grossman A. D.. ( 2008;). Inducible protein degradation in Bacillus subtilis using heterologous peptide tags and adaptor proteins to target substrates to the protease ClpXP. . Mol Microbiol 70:, 1012–1025.[PubMed]
    [Google Scholar]
  25. Gur E., Sauer R. T.. ( 2008;). Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. . Proc Natl Acad Sci U S A 105:, 16113–16118. [CrossRef][PubMed]
    [Google Scholar]
  26. Herman C., Thévenet D., Bouloc P., Walker G. C., D’Ari R.. ( 1998;). Degradation of carboxy-terminal-tagged cytoplasmic proteins by the Escherichia coli protease HflB (FtsH). . Genes Dev 12:, 1348–1355. [CrossRef][PubMed]
    [Google Scholar]
  27. Hersch G. L., Baker T. A., Sauer R. T.. ( 2004;). SspB delivery of substrates for ClpXP proteolysis probed by the design of improved degradation tags. . Proc Natl Acad Sci U S A 101:, 12136–12141. [CrossRef][PubMed]
    [Google Scholar]
  28. Jennings L. D., Bohon J., Chance M. R., Licht S.. ( 2008;a). The ClpP N-terminus coordinates substrate access with protease active site reactivity. . Biochemistry 47:, 11031–11040. [CrossRef][PubMed]
    [Google Scholar]
  29. Jennings L. D., Lun D. S., Médard M., Licht S.. ( 2008;b). ClpP hydrolyzes a protein substrate processively in the absence of the ClpA ATPase: mechanistic studies of ATP-independent proteolysis. . Biochemistry 47:, 11536–11546. [CrossRef][PubMed]
    [Google Scholar]
  30. Karradt A., Sobanski J., Mattow J., Lockau W., Baier K.. ( 2008;). NblA, a key protein of phycobilisome degradation, interacts with ClpC, a HSP100 chaperone partner of a cyanobacterial Clp protease. . J Biol Chem 283:, 32394–32403. [CrossRef][PubMed]
    [Google Scholar]
  31. Keiler K. C., Waller P. R., Sauer R. T.. ( 1996;). Role of a peptide tagging system in degradation of proteins synthesized from damaged messenger RNA. . Science 271:, 990–993. [CrossRef][PubMed]
    [Google Scholar]
  32. Kim Y. I., Burton R. E., Burton B. M., Sauer R. T., Baker T. A.. ( 2000;). Dynamics of substrate denaturation and translocation by the ClpXP degradation machine. . Mol Cell 5:, 639–648. [CrossRef][PubMed]
    [Google Scholar]
  33. Kim Y. I., Levchenko I., Fraczkowska K., Woodruff R. V., Sauer R. T., Baker T. A.. ( 2001;). Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. . Nat Struct Biol 8:, 230–233. [CrossRef][PubMed]
    [Google Scholar]
  34. Kirstein J., Dougan D. A., Gerth U., Hecker M., Turgay K.. ( 2007;). The tyrosine kinase McsB is a regulated adaptor protein for ClpCP. . EMBO J 26:, 2061–2070. [CrossRef][PubMed]
    [Google Scholar]
  35. Kirstein J., Molière N., Dougan D. A., Turgay K.. ( 2009;). Adapting the machine: adaptor proteins for Hsp100/Clp and AAA+ proteases. . Nat Rev Microbiol 7:, 589–599. [CrossRef][PubMed]
    [Google Scholar]
  36. Levchenko I., Seidel M., Sauer R. T., Baker T. A.. ( 2000;). A specificity-enhancing factor for the ClpXP degradation machine. . Science 289:, 2354–2356. [CrossRef][PubMed]
    [Google Scholar]
  37. Lies M., Maurizi M. R.. ( 2008;). Turnover of endogenous SsrA-tagged proteins mediated by ATP-dependent proteases in Escherichia coli. . J Biol Chem 283:, 22918–22929. [CrossRef][PubMed]
    [Google Scholar]
  38. Maguin E., Prévost H., Ehrlich S. D., Gruss A.. ( 1996;). Efficient insertional mutagenesis in lactococci and other gram-positive bacteria. . J Bacteriol 178:, 931–935.[PubMed]
    [Google Scholar]
  39. Martin A., Baker T. A., Sauer R. T.. ( 2007;). Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. . Mol Cell 27:, 41–52. [CrossRef][PubMed]
    [Google Scholar]
  40. Maurizi M. R., Clark W. P., Kim S. H., Gottesman S.. ( 1990;). Clp P represents a unique family of serine proteases. . J Biol Chem 265:, 12546–12552.[PubMed]
    [Google Scholar]
  41. McGinness K. E., Baker T. A., Sauer R. T.. ( 2006;). Engineering controllable protein degradation. . Mol Cell 22:, 701–707. [CrossRef][PubMed]
    [Google Scholar]
  42. McGinness K. E., Bolon D. N., Kaganovich M., Baker T. A., Sauer R. T.. ( 2007;). Altered tethering of the SspB adaptor to the ClpXP protease causes changes in substrate delivery. . J Biol Chem 282:, 11465–11473. [CrossRef][PubMed]
    [Google Scholar]
  43. Mei Z., Wang F., Qi Y., Zhou Z., Hu Q., Li H., Wu J., Shi Y.. ( 2009;). Molecular determinants of MecA as a degradation tag for the ClpCP protease. . J Biol Chem 284:, 34366–34375. [CrossRef][PubMed]
    [Google Scholar]
  44. Miethke M., Hecker M., Gerth U.. ( 2006;). Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. . J Bacteriol 188:, 4610–4619. [CrossRef][PubMed]
    [Google Scholar]
  45. Nair S., Frehel C., Nguyen L., Escuyer V., Berche P.. ( 1999;). ClpE, a novel member of the HSP100 family, is involved in cell division and virulence of Listeria monocytogenes. . Mol Microbiol 31:, 185–196. [CrossRef][PubMed]
    [Google Scholar]
  46. Persuh M., Mandic-Mulec I., Dubnau D.. ( 2002;). A MecA paralog, YpbH, binds ClpC, affecting both competence and sporulation. . J Bacteriol 184:, 2310–2313. [CrossRef][PubMed]
    [Google Scholar]
  47. Que Y. A., Haefliger J. A., Francioli P., Moreillon P.. ( 2000;). Expression of Staphylococcus aureus clumping factor A in Lactococcus lactis subsp. cremoris using a new shuttle vector. . Infect Immun 68:, 3516–3522. [CrossRef][PubMed]
    [Google Scholar]
  48. Rouquette C., de Chastellier C., Nair S., Berche P.. ( 1998;). The ClpC ATPase of Listeria monocytogenes is a general stress protein required for virulence and promoting early bacterial escape from the phagosome of macrophages. . Mol Microbiol 27:, 1235–1245. [CrossRef][PubMed]
    [Google Scholar]
  49. Sauer R. T., Baker T. A.. ( 2011;). AAA+ proteases: ATP-fueled machines of protein destruction. . Annu Rev Biochem 80:, 587–612. [CrossRef][PubMed]
    [Google Scholar]
  50. Schlothauer T., Mogk A., Dougan D. A., Bukau B., Turgay K.. ( 2003;). MecA, an adaptor protein necessary for ClpC chaperone activity. . Proc Natl Acad Sci U S A 100:, 2306–2311. [CrossRef][PubMed]
    [Google Scholar]
  51. Spiers A., Lamb H. K., Cocklin S., Wheeler K. A., Budworth J., Dodds A. L., Pallen M. J., Maskell D. J., Charles I. G., Hawkins A. R.. ( 2002;). PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. . J Biol Chem 277:, 39443–39449. [CrossRef][PubMed]
    [Google Scholar]
  52. Tao L., Chattoraj P., Biswas I.. ( 2012;). CtsR regulation in mcsAB-deficient Gram-positive bacteria. . J Bacteriol 194:, 1361–1368. [CrossRef][PubMed]
    [Google Scholar]
  53. Turgay K., Hahn J., Burghoorn J., Dubnau D.. ( 1998;). Competence in Bacillus subtilis is controlled by regulated proteolysis of a transcription factor. . EMBO J 17:, 6730–6738. [CrossRef][PubMed]
    [Google Scholar]
  54. Wang F., Mei Z., Qi Y., Yan C., Hu Q., Wang J., Shi Y.. ( 2011;). Structure and mechanism of the hexameric MecA–ClpC molecular machine. . Nature 471:, 331–335. [CrossRef][PubMed]
    [Google Scholar]
  55. Wiegert T., Schumann W.. ( 2001;). SsrA-mediated tagging in Bacillus subtilis. . J Bacteriol 183:, 3885–3889. [CrossRef][PubMed]
    [Google Scholar]
  56. Zhang J., Banerjee A., Biswas I.. ( 2009;a). Transcription of clpP is enhanced by a unique tandem repeat sequence in Streptococcus mutans. . J Bacteriol 191:, 1056–1065. [CrossRef][PubMed]
    [Google Scholar]
  57. Zhang Q., Xu S. X., Wang H., Xu W. C., Zhang X. M., Wu K. F., Liu L., Yin Y. B.. ( 2009;b). Contribution of ClpE to virulence of Streptococcus pneumoniae. . Can J Microbiol 55:, 1187–1194. [CrossRef][PubMed]
    [Google Scholar]
  58. Zwieb C., Gorodkin J., Knudsen B., Burks J., Wower J.. ( 2003;). tmRDB (tmRNA database). . Nucleic Acids Res 31:, 446–447. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000048
Loading
/content/journal/micro/10.1099/mic.0.000048
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error