1887

Abstract

One of the ABC transporter systems in V583 is encoded by the gene cluster, which differs from orthologous operons in related bacteria in that it contains two genes putatively encoding substrate-binding proteins (SBPs). These SBPs, EF0176 and EF0177, have previously been identified on the surface of . By phenotypic studies of single and double knockout mutants, we show here that EF0176 and EF0177 are specific for ribonucleosides and, by inference, that the EF0176–EF0180 ABC transporter plays a role in nucleoside uptake. The specificity of the SBPs was mapped using growth experiments on a medium, RPMI 1640, that only supports growth of when supplemented with purine nucleosides or their corresponding bases. This analysis was complemented by studies with toxic fluorinated pyrimidine ribonucleoside analogues and competition experiments. The data show that EF0176 and EF0177 have broad and overlapping, but not identical, substrate specificities and that they, together, are likely to bind and facilitate the transport of all common ribonucleosides. Comparative sequence analysis and inspection of an available crystal structure of an orthologue, PnrA from , showed that the strongest binding interactions between the protein and the ligand involve the ribose moiety and that sequence variation in the binding site primarily affects interactions with the base. This explains both the broad substrate specificity of these binding proteins and the observed variations therein. The presence of two SBPs in this nucleoside ABC transporter system in may improve the bacterium’s ability to scavenge nucleosides.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000045
2015-04-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/754.html?itemId=/content/journal/micro/10.1099/mic.0.000045&mimeType=html&fmt=ahah

References

  1. Aakra Å., Vebø H., Snipen L., Hirt H., Aastveit A., Kapur V., Dunny G., Murray B. E., Nes I. F.(2005). Transcriptional response of Enterococcus faecalis V583 to erythromycin. Antimicrob Agents Chemother 49, 22462259. [View Article][PubMed] [Google Scholar]
  2. Aakra A., Vebø H., Indahl U., Snipen L., Gjerstad O., Lunde M., Nes I. F.(2010). The Response of Enterococcus faecalis V583 to Chloramphenicol Treatment. Int J Microbiol 2010, 483048. [View Article][PubMed] [Google Scholar]
  3. Alteri C. J., Mobley H. L.(2012). Escherichia coli physiology and metabolism dictates adaptation to diverse host microenvironments. Curr Opin Microbiol 15, 39. [View Article][PubMed] [Google Scholar]
  4. Belitsky B. R., Sonenshein A. L.(2011). CodY-mediated regulation of guanosine uptake in Bacillus subtilis.J Bacteriol 193, 62766287. [View Article][PubMed] [Google Scholar]
  5. Bidossi A., Mulas L., Decorosi F., Colomba L., Ricci S., Pozzi G., Deutscher J., Viti C., Oggioni M. R.(2012). A functional genomics approach to establish the complement of carbohydrate transporters in Streptococcus pneumoniae.PLoS ONE 7, e33320. [View Article][PubMed] [Google Scholar]
  6. Biemans-Oldehinkel E., Doeven M. K., Poolman B.(2006). ABC transporter architecture and regulatory roles of accessory domains. FEBS Lett 580, 10231035. [View Article][PubMed] [Google Scholar]
  7. Biswas I., Gruss A., Ehrlich S. D., Maguin E.(1993). High-efficiency gene inactivation and replacement system for gram-positive bacteria. J Bacteriol 175, 36283635.[PubMed] [Google Scholar]
  8. Bochner B. R., Gadzinski P., Panomitros E.(2001). Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11, 12461255. [View Article][PubMed] [Google Scholar]
  9. Bøhle L. A., Riaz T., Egge-Jacobsen W., Skaugen M., Busk O. L., Eijsink V. G., Mathiesen G.(2011). Identification of surface proteins in Enterococcus faecalis V583. BMC Genomics 12, 135. [View Article][PubMed] [Google Scholar]
  10. Davidson A. L., Dassa E., Orelle C., Chen J.(2008). Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72, 317364. [View Article][PubMed] [Google Scholar]
  11. Davis D. R., McAlpine J. B., Pazoles C. J., Talbot M. K., Alder E. A., White C., Jonas B. M., Murray B. E., Weinstock G. M., Rogers B. L.(2001). Enterococcus faecalis multi-drug resistance transporters: application for antibiotic discovery. J Mol Microbiol Biotechnol 3, 179184.[PubMed] [Google Scholar]
  12. Deka R. K., Brautigam C. A., Yang X. F., Blevins J. S., Machius M., Tomchick D. R., Norgard M. V.(2006). The PnrA (Tp0319; TmpC) lipoprotein represents a new family of bacterial purine nucleoside receptor encoded within an ATP-binding cassette (ABC)-like operon in Treponema pallidum.J Biol Chem 281, 80728081. [View Article][PubMed] [Google Scholar]
  13. Firon A., Dinis M., Raynal B., Poyart C., Trieu-Cuot P., Kaminski P. A.(2014). Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. J Biol Chem 289, 54795489. [View Article][PubMed] [Google Scholar]
  14. Fulyani F., Schuurman-Wolters G. K., Zagar A. V., Guskov A., Slotboom D. J., Poolman B.(2013). Functional diversity of tandem substrate-binding domains in ABC transporters from pathogenic bacteria. Structure 21, 18791888. [View Article][PubMed] [Google Scholar]
  15. Garmory H. S., Titball R. W.(2004). ATP-binding cassette transporters are targets for the development of antibacterial vaccines and therapies. Infect Immun 72, 67576763. [View Article][PubMed] [Google Scholar]
  16. Gilmore M. S., Segarra R. A., Booth M. C.(1990). An HlyB-type function is required for expression of the Enterococcus faecalis hemolysin/bacteriocin. Infect Immun 58, 39143923.[PubMed] [Google Scholar]
  17. Hedstrom L.(2009). IMP dehydrogenase: structure, mechanism, and inhibition. Chem Rev 109, 29032928. [View Article][PubMed] [Google Scholar]
  18. Holo H., Nes I. F.(1989). High-frequency transformation, by electroporation, of Lactococcus lactis subsp. cremoris grown with glycine in osmotically stabilized media. Appl Environ Microbiol 55, 31193123.[PubMed] [Google Scholar]
  19. Horton R. M., Cai Z. L., Ho S. N., Pease L. R.(1990). Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8, 528535.[PubMed] [Google Scholar]
  20. Jenkins A., Cote C., Twenhafel N., Merkel T., Bozue J., Welkos S.(2011). Role of purine biosynthesis in Bacillus anthracis pathogenesis and virulence. Infect Immun 79, 153166. [View Article][PubMed] [Google Scholar]
  21. Jönsson M., Saleihan Z., Nes I. F., Holo H.(2009). Construction and characterization of three lactate dehydrogenase-negative Enterococcus faecalis V583 mutants. Appl Environ Microbiol 75, 49014903. [View Article][PubMed] [Google Scholar]
  22. Khan H., Flint S. H., Yu P. L.(2013). Development of a chemically defined medium for the production of enterolysin A from Enterococcus faecalis B9510. J Appl Microbiol 114, 10921102. [View Article][PubMed] [Google Scholar]
  23. Kilstrup M., Hammer K., Ruhdal Jensen P., Martinussen J.(2005). Nucleotide metabolism and its control in lactic acid bacteria. FEMS Microbiol Rev 29, 555590. [View Article][PubMed] [Google Scholar]
  24. Lebreton F., Willems R. J. L., Gilmore M. S.(2014). Enterococcus diversity, origins in nature, and gut colonization. In Enterococci: From Commensals to Leading Causes of Drug Resistant Infection. Edited by Gilmore M. S., Clewell D. B., Ike Y., Shankar N.. Boston: Massachusetts Eye and Ear Infirmary. [Google Scholar]
  25. Lee E. W., Huda M. N., Kuroda T., Mizushima T., Tsuchiya T.(2003). EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis.Antimicrob Agents Chemother 47, 37333738. [View Article][PubMed] [Google Scholar]
  26. Low Y. L., Jakubovics N. S., Flatman J. C., Jenkinson H. F., Smith A. W.(2003). Manganese-dependent regulation of the endocarditis-associated virulence factor EfaA of Enterococcus faecalis.J Med Microbiol 52, 113119. [View Article][PubMed] [Google Scholar]
  27. Lubelski J., Konings W. N., Driessen A. J.(2007). Distribution and physiology of ABC-type transporters contributing to multidrug resistance in bacteria. Microbiol Mol Biol Rev 71, 463476. [View Article][PubMed] [Google Scholar]
  28. Manson J. M., Keis S., Smith J. M., Cook G. M.(2004). Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob Agents Chemother 48, 37433748. [View Article][PubMed] [Google Scholar]
  29. Martinussen J., Andersen P. S., Hammer K.(1994). Nucleotide metabolism in Lactococcus lactis: salvage pathways of exogenous pyrimidines. J Bacteriol 176, 15141516.[PubMed] [Google Scholar]
  30. Martinussen J., Sørensen C., Jendresen C. B., Kilstrup M.(2010). Two nucleoside transporters in Lactococcus lactis with different substrate specificities. Microbiology 156, 31483157. [View Article][PubMed] [Google Scholar]
  31. Murray B. E., Singh K. V., Ross R. P., Heath J. D., Dunny G. M., Weinstock G. M.(1993). Generation of restriction map of Enterococcus faecalis OG1 and investigation of growth requirements and regions encoding biosynthetic function. J Bacteriol 175, 52165223.[PubMed] [Google Scholar]
  32. Rigottier-Gois L., Alberti A., Houel A., Taly J. F., Palcy P., Manson J., Pinto D., Matos R. C., Carrilero L. et al.(2011). Large-scale screening of a targeted Enterococcus faecalis mutant library identifies envelope fitness factors. PLoS ONE 6, e29023. [View Article][PubMed] [Google Scholar]
  33. Sahm D. F., Kissinger J., Gilmore M. S., Murray P. R., Mulder R., Solliday J., Clarke B.(1989). In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis.Antimicrob Agents Chemother 33, 15881591. [View Article][PubMed] [Google Scholar]
  34. Saier M. H. Jr(2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64, 354411. [View Article][PubMed] [Google Scholar]
  35. Samant S., Lee H., Ghassemi M., Chen J., Cook J. L., Mankin A. S., Neyfakh A. A.(2008). Nucleotide biosynthesis is critical for growth of bacteria in human blood. PLoS Pathog 4, e37. [View Article][PubMed] [Google Scholar]
  36. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al.(2011). Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7, 539. [View Article][PubMed] [Google Scholar]
  37. Singh K. V., Weinstock G. M., Murray B. E.(2002). An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristin-dalfopristin. Antimicrob Agents Chemother 46, 18451850. [View Article][PubMed] [Google Scholar]
  38. Sun R., Wang L.(2013). Inhibition of Mycoplasma pneumoniae growth by FDA-approved anticancer and antiviral nucleoside and nucleobase analogs. BMC Microbiol 13, 184. [View Article][PubMed] [Google Scholar]
  39. Webb A. J., Hosie A. H.(2006). A member of the second carbohydrate uptake subfamily of ATP-binding cassette transporters is responsible for ribonucleoside uptake in Streptococcus mutans.J Bacteriol 188, 80058012. [View Article][PubMed] [Google Scholar]
  40. Xue X., Sztajer H., Buddruhs N., Petersen J., Rohde M., Talay S. R., Wagner-Döbler I.(2011). Lack of the delta subunit of RNA polymerase increases virulence related traits of Streptococcus mutans. PLoS ONE 6, e20075. [View Article][PubMed] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000045
Loading
/content/journal/micro/10.1099/mic.0.000045
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error