Fusaric acid (FA) is a key component in virulence and symptom development in cotton during infection by . A putative major facilitator superfamily (MFS) transporter gene was identified downstream of the polyketide synthase gene responsible for the biosynthesis of FA in a region previously believed to be unrelated to the known FA gene cluster. Disruption of the transporter gene, designated , resulted in loss of FA secretion, decrease in FA production and a decrease in resistance to high concentrations of FA. Uptake of exogenous FA was unaffected in the disruption transformants, suggesting that FA enters the cell in by an independent mechanism. Thus, is involved both in the extracellular transport of FA and in resistance of to this non-specific toxin. A potential secondary resistance mechanism, the production of FA derivatives, was observed in deletion mutants. Molecular analysis of key biochemical processes in the production of FA could lead to future host plant resistance to pathogens.


Article metrics loading...

Loading full text...

Full text loading...



  1. Alexander N. J., McCormick S. P., Hohn T. M.(1999). TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. Mol Gen Genet 261, 977984. [View Article][PubMed] [Google Scholar]
  2. Brown D. W., Butchko R. A. E., Busman M., Proctor R. H.(2012). Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides.Fungal Genet Biol 49, 521532. [View Article][PubMed] [Google Scholar]
  3. Callahan T. M., Rose M. S., Meade M. J., Ehrenshaft M., Upchurch R. G.(1999). CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. Mol Plant Microbe Interact 12, 901910. [View Article][PubMed] [Google Scholar]
  4. Chakrabarti D. K., Ghosal S.(1989). The disease cycle of mango malformation induced by Fusarium moniliforme var. subglutinans and the curative effects of mangiferin-metal chelates. J Phytopathol 125, 238246. [View Article] [Google Scholar]
  5. Choquer M., Lee M. H., Bau H. J., Chung K. R.(2007). Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. FEBS Lett 581, 489494. [View Article][PubMed] [Google Scholar]
  6. Crutcher F. K., Liu J., Puckhaber L. S., Stipanovic R. D., Duke S. E., Bell A. A., Williams H. J., Nichols R. L.(2014). Conversion of fusaric acid to Fusarinol by Aspergillus tubingensis: a detoxification reaction. J Chem Ecol 40, 8489. [View Article][PubMed] [Google Scholar]
  7. D’Alton A., Etherton B.(1984). Effects of fusaric Acid on tomato root hair membrane potentials and ATP levels. Plant Physiol 74, 3942. [View Article][PubMed] [Google Scholar]
  8. Davis R. D., Colyer P. D., Rothrock C. S., Kockman J. K.(2006). Fusarium wilt of cotton: population diversity and implications for management. Plant Dis 90, 692703. [View Article] [Google Scholar]
  9. Del Sorbo G., Schoonbeek H., De Waard M. A.(2000). Fungal transporters involved in efflux of natural toxic compounds and fungicides. Fungal Genet Biol 30, 115. [View Article][PubMed] [Google Scholar]
  10. Gardiner D. M., Jarvis R. S., Howlett B. J.(2005a). The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. Fungal Genet Biol 42, 257263. [View Article][PubMed] [Google Scholar]
  11. Gardiner D. M., Waring P., Howlett B. J.(2005b). The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. Microbiology 151, 10211032. [View Article][PubMed] [Google Scholar]
  12. Gaumann E.(1957). Fusaric acid as a wilt toxin. Phytopathology 47, 342357. [Google Scholar]
  13. Gaumann E.(1958). The mechanism of fusaric acid injury. Phytopathology 47, 342357. [Google Scholar]
  14. Gäumann E., Naef-Roth S., Kobel H.(1952). Uber Fusarinsäure, ein zweites Welketoxin des Fusarium lycopersici Sacc. Phytopath Ztschr 20, 138. [Google Scholar]
  15. Hofmann K., Stoffel W.(1993). TMbase - A database of membrane spanning proteins segments. Biol Chem 374, 166. [Google Scholar]
  16. Jiao J., Zhou B., Zhu X., Gao Z., Liang Y.(2013). Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells. Planta 238, 727737. [View Article][PubMed] [Google Scholar]
  17. Keller N. P., Turner G., Bennett J. W.(2005). Fungal secondary metabolism - from biochemistry to genomics. Nat Rev Microbiol 3, 937947. [View Article][PubMed] [Google Scholar]
  18. Kelley L. A., Sternberg M. J. E.(2009). Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc 4, 363371. [View Article][PubMed] [Google Scholar]
  19. Kim Y., Hutmacher R. B., Davis R. M.(2005). Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum.Plant Dis 89, 366372. [View Article] [Google Scholar]
  20. Köhler K., Bentrup F. W.(1983). The effect of fusaric acid upon electrical membrane properties and ATP level in photoautotrophic cell suspension cultures of Chenopodium rubrum L.Zeitschrift für Pflanzenphysiologie 109, 355361. [View Article] [Google Scholar]
  21. Liu, J., Bell, A. A., Stipanovic, R., Puckhaber, L. & Shim, W. (2011). A polyketide synthase gene and an aspartate kinase like gene are required for the biosynthesis of fusaric acid in Fusarium f. sp. vasinfectum. In: Proceedings of the Beltwide Cotton Conferences. (eds S. Boyd, M. Huffman & B. Robertson). Memphis, TN.
  22. Marrè M. T., Vergani P., Albergoni F. G.(1993). Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration. Physiol Mol Plant Pathol 42, 141157. [View Article] [Google Scholar]
  23. Masek T., Vopalensky V., Suchomelova P., Pospisek M.(2005). Denaturing RNA electrophoresis in TAE agarose gels. Anal Biochem 336, 4650. [View Article][PubMed] [Google Scholar]
  24. Mullins E. D., Chen X., Romaine P., Raina R., Geiser D. M., Kang S.(2001). Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91, 173180. [View Article][PubMed] [Google Scholar]
  25. Niehaus E. M., von Bargen K. W., Espino J. J., Pfannmüller A., Humpf H. U., Tudzynski B.(2014). Characterization of the fusaric acid gene cluster in Fusarium fujikuroi.Appl Microbiol Biotechnol 98, 17491762. [View Article][PubMed] [Google Scholar]
  26. Paulsen I. T., Skurray R. A.(1993). Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes–an analysis. Gene 124, 111. [View Article][PubMed] [Google Scholar]
  27. Pavlovkin J.(1998). Effect of fusaric acid on the electrical properties of maize root hairs plasmalemma. Agriculture 44, 350355. [Google Scholar]
  28. Paz Z., García-Pedrajas M. D., Andrews D. L., Klosterman S. J., Baeza-Montañez L., Gold S. E.(2011). One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 48, 677684. [View Article][PubMed] [Google Scholar]
  29. Pitkin J. W., Panaccione D. G., Walton J. D.(1996). A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum.Microbiology 142, 15571565. [View Article][PubMed] [Google Scholar]
  30. Samadi L., Shahsavan Behboodi B.(2006). Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2.Planta 225, 223234. [View Article][PubMed] [Google Scholar]
  31. Stipanovic R. D., Puckhaber L. S., Liu J., Bell A. A.(2011). Phytotoxicity of fusaric acid and analogs to cotton. Toxicon 57, 176178. [View Article][PubMed] [Google Scholar]
  32. Teijeira F., Ullán R. V., Guerra S. M., García-Estrada C., Vaca I., Martín J. F.(2009). The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. Biochem J 418, 113124. [View Article][PubMed] [Google Scholar]
  33. Ullán R. V., Liu G., Casqueiro J., Gutiérrez S., Bañuelos O., Martín J. F.(2002). The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. Mol Genet Genomics 267, 673683. [View Article][PubMed] [Google Scholar]
  34. Upchurch R. G., Rose M. S., Eweida M.(2001). Over-expression of the cercosporin facilitator protein, CFP, in Cercospora kikuchii up-regulates production and secretion of cercosporin. FEMS Microbiol Lett 204, 8993. [View Article][PubMed] [Google Scholar]
  35. Yu J. H., Keller N.(2005). Regulation of secondary metabolism in filamentous fungi. Annu Rev Phytopathol 43, 437458. [View Article][PubMed] [Google Scholar]

Data & Media loading...


Supplementary Data


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error