1887

Abstract

Fusaric acid (FA) is a key component in virulence and symptom development in cotton during infection by . A putative major facilitator superfamily (MFS) transporter gene was identified downstream of the polyketide synthase gene responsible for the biosynthesis of FA in a region previously believed to be unrelated to the known FA gene cluster. Disruption of the transporter gene, designated , resulted in loss of FA secretion, decrease in FA production and a decrease in resistance to high concentrations of FA. Uptake of exogenous FA was unaffected in the disruption transformants, suggesting that FA enters the cell in by an independent mechanism. Thus, is involved both in the extracellular transport of FA and in resistance of to this non-specific toxin. A potential secondary resistance mechanism, the production of FA derivatives, was observed in deletion mutants. Molecular analysis of key biochemical processes in the production of FA could lead to future host plant resistance to pathogens.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000043
2015-04-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/875.html?itemId=/content/journal/micro/10.1099/mic.0.000043&mimeType=html&fmt=ahah

References

  1. Alexander N. J., McCormick S. P., Hohn T. M.. ( 1999; ). TRI12, a trichothecene efflux pump from Fusarium sporotrichioides: gene isolation and expression in yeast. . Mol Gen Genet 261:, 977–984. [CrossRef] [PubMed]
    [Google Scholar]
  2. Brown D. W., Butchko R. A. E., Busman M., Proctor R. H.. ( 2012; ). Identification of gene clusters associated with fusaric acid, fusarin, and perithecial pigment production in Fusarium verticillioides.. Fungal Genet Biol 49:, 521–532. [CrossRef] [PubMed]
    [Google Scholar]
  3. Callahan T. M., Rose M. S., Meade M. J., Ehrenshaft M., Upchurch R. G.. ( 1999; ). CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean. . Mol Plant Microbe Interact 12:, 901–910. [CrossRef] [PubMed]
    [Google Scholar]
  4. Chakrabarti D. K., Ghosal S.. ( 1989; ). The disease cycle of mango malformation induced by Fusarium moniliforme var. subglutinans and the curative effects of mangiferin-metal chelates. . J Phytopathol 125:, 238–246. [CrossRef]
    [Google Scholar]
  5. Choquer M., Lee M. H., Bau H. J., Chung K. R.. ( 2007; ). Deletion of a MFS transporter-like gene in Cercospora nicotianae reduces cercosporin toxin accumulation and fungal virulence. . FEBS Lett 581:, 489–494. [CrossRef] [PubMed]
    [Google Scholar]
  6. Crutcher F. K., Liu J., Puckhaber L. S., Stipanovic R. D., Duke S. E., Bell A. A., Williams H. J., Nichols R. L.. ( 2014; ). Conversion of fusaric acid to Fusarinol by Aspergillus tubingensis: a detoxification reaction. . J Chem Ecol 40:, 84–89. [CrossRef] [PubMed]
    [Google Scholar]
  7. D’Alton A., Etherton B.. ( 1984; ). Effects of fusaric Acid on tomato root hair membrane potentials and ATP levels. . Plant Physiol 74:, 39–42. [CrossRef] [PubMed]
    [Google Scholar]
  8. Davis R. D., Colyer P. D., Rothrock C. S., Kockman J. K.. ( 2006; ). Fusarium wilt of cotton: population diversity and implications for management. . Plant Dis 90:, 692–703. [CrossRef]
    [Google Scholar]
  9. Del Sorbo G., Schoonbeek H., De Waard M. A.. ( 2000; ). Fungal transporters involved in efflux of natural toxic compounds and fungicides. . Fungal Genet Biol 30:, 1–15. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gardiner D. M., Jarvis R. S., Howlett B. J.. ( 2005; a). The ABC transporter gene in the sirodesmin biosynthetic gene cluster of Leptosphaeria maculans is not essential for sirodesmin production but facilitates self-protection. . Fungal Genet Biol 42:, 257–263. [CrossRef] [PubMed]
    [Google Scholar]
  11. Gardiner D. M., Waring P., Howlett B. J.. ( 2005; b). The epipolythiodioxopiperazine (ETP) class of fungal toxins: distribution, mode of action, functions and biosynthesis. . Microbiology 151:, 1021–1032. [CrossRef] [PubMed]
    [Google Scholar]
  12. Gaumann E.. ( 1957; ). Fusaric acid as a wilt toxin. . Phytopathology 47:, 342–357.
    [Google Scholar]
  13. Gaumann E.. ( 1958; ). The mechanism of fusaric acid injury. . Phytopathology 47:, 342–357.
    [Google Scholar]
  14. Gäumann E., Naef-Roth S., Kobel H.. ( 1952; ). Uber Fusarinsäure, ein zweites Welketoxin des Fusarium lycopersici Sacc. . Phytopath Ztschr 20:, 1–38.
    [Google Scholar]
  15. Hofmann K., Stoffel W.. ( 1993; ). TMbase - A database of membrane spanning proteins segments. . Biol Chem 374:, 166.
    [Google Scholar]
  16. Jiao J., Zhou B., Zhu X., Gao Z., Liang Y.. ( 2013; ). Fusaric acid induction of programmed cell death modulated through nitric oxide signalling in tobacco suspension cells. . Planta 238:, 727–737. [CrossRef] [PubMed]
    [Google Scholar]
  17. Keller N. P., Turner G., Bennett J. W.. ( 2005; ). Fungal secondary metabolism - from biochemistry to genomics. . Nat Rev Microbiol 3:, 937–947. [CrossRef] [PubMed]
    [Google Scholar]
  18. Kelley L. A., Sternberg M. J. E.. ( 2009; ). Protein structure prediction on the Web: a case study using the Phyre server. . Nat Protoc 4:, 363–371. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kim Y., Hutmacher R. B., Davis R. M.. ( 2005; ). Characterization of California isolates of Fusarium oxysporum f. sp. vasinfectum.. Plant Dis 89:, 366–372. [CrossRef]
    [Google Scholar]
  20. Köhler K., Bentrup F. W.. ( 1983; ). The effect of fusaric acid upon electrical membrane properties and ATP level in photoautotrophic cell suspension cultures of Chenopodium rubrum L.. Zeitschrift für Pflanzenphysiologie 109:, 355–361. [CrossRef]
    [Google Scholar]
  21. Liu, J., Bell, A. A., Stipanovic, R., Puckhaber, L. & Shim, W. (2011). A polyketide synthase gene and an aspartate kinase like gene are required for the biosynthesis of fusaric acid in Fusarium f. sp. vasinfectum. In: Proceedings of the Beltwide Cotton Conferences. (eds S. Boyd, M. Huffman & B. Robertson). Memphis, TN.
  22. Marrè M. T., Vergani P., Albergoni F. G.. ( 1993; ). Relationship between fusaric acid uptake and its binding to cell structures by leaves of Egeria densa and its toxic effects on membrane permeability and respiration. . Physiol Mol Plant Pathol 42:, 141–157. [CrossRef]
    [Google Scholar]
  23. Masek T., Vopalensky V., Suchomelova P., Pospisek M.. ( 2005; ). Denaturing RNA electrophoresis in TAE agarose gels. . Anal Biochem 336:, 46–50. [CrossRef] [PubMed]
    [Google Scholar]
  24. Mullins E. D., Chen X., Romaine P., Raina R., Geiser D. M., Kang S.. ( 2001; ). Agrobacterium-mediated transformation of Fusarium oxysporum: An efficient tool for insertional mutagenesis and gene transfer. . Phytopathology 91:, 173–180. [CrossRef] [PubMed]
    [Google Scholar]
  25. Niehaus E. M., von Bargen K. W., Espino J. J., Pfannmüller A., Humpf H. U., Tudzynski B.. ( 2014; ). Characterization of the fusaric acid gene cluster in Fusarium fujikuroi.. Appl Microbiol Biotechnol 98:, 1749–1762. [CrossRef] [PubMed]
    [Google Scholar]
  26. Paulsen I. T., Skurray R. A.. ( 1993; ). Topology, structure and evolution of two families of proteins involved in antibiotic and antiseptic resistance in eukaryotes and prokaryotes–an analysis. . Gene 124:, 1–11. [CrossRef] [PubMed]
    [Google Scholar]
  27. Pavlovkin J.. ( 1998; ). Effect of fusaric acid on the electrical properties of maize root hairs plasmalemma. . Agriculture 44:, 350–355.
    [Google Scholar]
  28. Paz Z., García-Pedrajas M. D., Andrews D. L., Klosterman S. J., Baeza-Montañez L., Gold S. E.. ( 2011; ). One step construction of Agrobacterium-Recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. . Fungal Genet Biol 48:, 677–684. [CrossRef] [PubMed]
    [Google Scholar]
  29. Pitkin J. W., Panaccione D. G., Walton J. D.. ( 1996; ). A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum.. Microbiology 142:, 1557–1565. [CrossRef] [PubMed]
    [Google Scholar]
  30. Samadi L., Shahsavan Behboodi B.. ( 2006; ). Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2.. Planta 225:, 223–234. [CrossRef] [PubMed]
    [Google Scholar]
  31. Stipanovic R. D., Puckhaber L. S., Liu J., Bell A. A.. ( 2011; ). Phytotoxicity of fusaric acid and analogs to cotton. . Toxicon 57:, 176–178. [CrossRef] [PubMed]
    [Google Scholar]
  32. Teijeira F., Ullán R. V., Guerra S. M., García-Estrada C., Vaca I., Martín J. F.. ( 2009; ). The transporter CefM involved in translocation of biosynthetic intermediates is essential for cephalosporin production. . Biochem J 418:, 113–124. [CrossRef] [PubMed]
    [Google Scholar]
  33. Ullán R. V., Liu G., Casqueiro J., Gutiérrez S., Bañuelos O., Martín J. F.. ( 2002; ). The cefT gene of Acremonium chrysogenum C10 encodes a putative multidrug efflux pump protein that significantly increases cephalosporin C production. . Mol Genet Genomics 267:, 673–683. [CrossRef] [PubMed]
    [Google Scholar]
  34. Upchurch R. G., Rose M. S., Eweida M.. ( 2001; ). Over-expression of the cercosporin facilitator protein, CFP, in Cercospora kikuchii up-regulates production and secretion of cercosporin. . FEMS Microbiol Lett 204:, 89–93. [CrossRef] [PubMed]
    [Google Scholar]
  35. Yu J. H., Keller N.. ( 2005; ). Regulation of secondary metabolism in filamentous fungi. . Annu Rev Phytopathol 43:, 437–458. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000043
Loading
/content/journal/micro/10.1099/mic.0.000043
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error