1887

Abstract

The porcine and human pathogen induces and degrades neutrophil extracellular traps (NETs) . In this study, we investigated the working hypothesis that NET degradation is mediated not only by the known secreted nuclease A (SsnA) but also by a so-far undescribed putative endonuclease A of (designated EndAsuis) homologous to the pneumococcal endonuclease A (EndA). Comparative analysis was conducted to identify differences in localization, expression and function of EndAsuis and SsnA. In contrast to , RNA expression was not substantially different during exponential and stationary growth. Modelling of the 3D structure confirmed a putative DRGH-motif-containing ββα-metal finger catalytic core in EndAsuis. Accordingly, nuclease activity of recombinant EndAsuis with a point-mutated H165 was rescued through imidazol treatment. In accordance with a putative membrane anchor, nuclease activity caused by was not detectable in the supernatant. Importantly, determined nuclease activity of prominently during exponential growth. This activity depended on the presence of Mg but, in contrast to SsnA activity, not on Ca. A pH of 5.4 did not inhibit -encoded nuclease activity during exponential growth. NET degradation of harvested during exponential growth was significantly attenuated in the mutant. In contrast to SsnA, mutagenesis of did not result in a significantly higher susceptibility against the antimicrobial effect mediated by NETs. As degradation of bacterial DNA caused by depended on A and , further functions of both factors in the host–pathogen interaction might be envisioned.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000040
2015-04-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/838.html?itemId=/content/journal/micro/10.1099/mic.0.000040&mimeType=html&fmt=ahah

References

  1. Arends J. P., Zanen H. C.. ( 1988; ). Meningitis caused by Streptococcus suis in humans. . Rev Infect Dis 10:, 131–137. [CrossRef] [PubMed]
    [Google Scholar]
  2. Arnold K., Bordoli L., Kopp J., Schwede T.. ( 2006; ). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. . Bioinformatics 22:, 195–201. [CrossRef] [PubMed]
    [Google Scholar]
  3. Aziz R. K., Ismail S. A., Park H. W., Kotb M.. ( 2004; ). Post-proteomic identification of a novel phage-encoded streptodornase, Sda1, in invasive M1T1 Streptococcus pyogenes. . Mol Microbiol 54:, 184–197. [CrossRef] [PubMed]
    [Google Scholar]
  4. Baker N. A., Sept D., Joseph S., Holst M. J., McCammon J. A.. ( 2001; ). Electrostatics of nanosystems: application to microtubules and the ribosome. . Proc Natl Acad Sci U S A 98:, 10037–10041. [CrossRef] [PubMed]
    [Google Scholar]
  5. Baums C. G., Valentin-Weigand P.. ( 2009; ). Surface-associated and secreted factors of Streptococcus suis in epidemiology, pathogenesis and vaccine development. . Anim Health Res Rev 10:, 65–83. [CrossRef] [PubMed]
    [Google Scholar]
  6. Baums C. G., Kaim U., Fulde M., Ramachandran G., Goethe R., Valentin-Weigand P.. ( 2006; ). Identification of a novel virulence determinant with serum opacification activity in Streptococcus suis. . Infect Immun 74:, 6154–6162. [CrossRef] [PubMed]
    [Google Scholar]
  7. Baums C. G., Kock C., Beineke A., Bennecke K., Goethe R., Schröder C., Waldmann K.-H., Valentin-Weigand P.. ( 2009; ). Streptococcus suis bacterin and subunit vaccine immunogenicities and protective efficacies against serotypes 2 and 9. . Clin Vaccine Immunol 16:, 200–208. [CrossRef] [PubMed]
    [Google Scholar]
  8. Beineke A., Bennecke K., Neis C., Schröder C., Waldmann K.-H., Baumgärtner W., Valentin-Weigand P., Baums C. G.. ( 2008; ). Comparative evaluation of virulence and pathology of Streptococcus suis serotypes 2 and 9 in experimentally infected growers. . Vet Microbiol 128:, 423–430. [CrossRef] [PubMed]
    [Google Scholar]
  9. Beiter K., Wartha F., Albiger B., Normark S., Zychlinsky A., Henriques-Normark B.. ( 2006; ). An endonuclease allows Streptococcus pneumoniae to escape from neutrophil extracellular traps. . Curr Biol 16:, 401–407. [CrossRef] [PubMed]
    [Google Scholar]
  10. Berends E. T. M., Horswill A. R., Haste N. M., Monestier M., Nizet V., von Köckritz-Blickwede M.. ( 2010; ). Nuclease expression by Staphylococcus aureus facilitates escape from neutrophil extracellular traps. . J Innate Immun 2:, 576–586. [CrossRef] [PubMed]
    [Google Scholar]
  11. Bergé M. J., Kamgoué A., Martin B., Polard P., Campo N., Claverys J.-P.. ( 2013; ). Midcell recruitment of the DNA uptake and virulence nuclease, EndA, for pneumococcal transformation. . PLoS Pathog 9:, e1003596. [CrossRef] [PubMed]
    [Google Scholar]
  12. Biasini M., Bienert S., Waterhouse A., Arnold K., Studer G., Schmidt T., Kiefer F., Cassarino T. G., Bertoni M. et al. ( 2014; ). SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. . Nucleic Acids Res 42: ( Web Server issue), W252–W258. [CrossRef] [PubMed]
    [Google Scholar]
  13. Brinkmann V., Reichard U., Goosmann C., Fauler B., Uhlemann Y., Weiss D. S., Weinrauch Y., Zychlinsky A.. ( 2004; ). Neutrophil extracellular traps kill bacteria. . Science 303:, 1532–1535. [CrossRef] [PubMed]
    [Google Scholar]
  14. Buchanan J. T., Simpson A. J., Aziz R. K., Liu G. Y., Kristian S. A., Kotb M., Feramisco J., Nizet V.. ( 2006; ). DNase expression allows the pathogen group A Streptococcus to escape killing in neutrophil extracellular traps. . Curr Biol 16:, 396–400. [CrossRef] [PubMed]
    [Google Scholar]
  15. Chang A., Khemlani A., Kang H., Proft T.. ( 2011; ). Functional analysis of Streptococcus pyogenes nuclease A (SpnA), a novel group A streptococcal virulence factor. . Mol Microbiol 79:, 1629–1642. [CrossRef] [PubMed]
    [Google Scholar]
  16. Couch G. S., Hendrix D. K., Ferrin T. E.. ( 2006; ). Nucleic acid visualization with UCSF Chimera. . Nucleic Acids Res 34:, e29. [CrossRef] [PubMed]
    [Google Scholar]
  17. de Buhr N., Neumann A., Jerjomiceva N., von Köckritz-Blickwede M., Baums C. G.. ( 2014; ). Streptococcus suis DNase SsnA contributes to degradation of neutrophil extracellular traps (NETs) and evasion of NET-mediated antimicrobial activity. . Microbiology 160:, 385–395. [CrossRef] [PubMed]
    [Google Scholar]
  18. Derré-Bobillot A., Cortes-Perez N. G., Yamamoto Y., Kharrat P., Couvé E., Da Cunha V., Decker P., Boissier M. C., Escartin F. et al. ( 2013; ). Nuclease A (Gbs0661), an extracellular nuclease of Streptococcus agalactiae, attacks the neutrophil extracellular traps and is needed for full virulence. . Mol Microbiol 89:, 518–531. [CrossRef] [PubMed]
    [Google Scholar]
  19. Emsley P., Lohkamp B., Scott W. G., Cowtan K.. ( 2010; ). Features and development of Coot. . Acta Crystallogr D Biol Crystallogr 66:, 486–501. [CrossRef] [PubMed]
    [Google Scholar]
  20. Fontaine M. C., Perez-Casal J., Willson P. J.. ( 2004; ). Investigation of a novel DNase of Streptococcus suis serotype 2. . Infect Immun 72:, 774–781. [CrossRef] [PubMed]
    [Google Scholar]
  21. Gottschalk M.. ( 2012; ). Streptococcosis. . In Diseases of Swine, , 10th edn., pp. 841–855. Edited by Zimmerman J. J., Kariker L. A., Ramirez A., Schwartz K. J., Stevenson G. W... Oxford:: Wiley-Blackwell;.
    [Google Scholar]
  22. Gottschalk M., Segura M.. ( 2000; ). The pathogenesis of the meningitis caused by Streptococcus suis: the unresolved questions. . Vet Microbiol 76:, 259–272. [CrossRef] [PubMed]
    [Google Scholar]
  23. Guex N., Peitsch M. C.. ( 1997; ). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. . Electrophoresis 18:, 2714–2723. [CrossRef] [PubMed]
    [Google Scholar]
  24. Haas B., Bonifait L., Vaillancourt K., Charette S. J., Gottschalk M., Grenier D.. ( 2014; ). Characterization of DNase activity and gene in Streptococcus suis and evidence for a role as virulence factor. . BMC Res Notes 7:, 424. [CrossRef] [PubMed]
    [Google Scholar]
  25. Jones D. T., Taylor W. R., Thornton J. M.. ( 1994; ). A model recognition approach to the prediction of all-helical membrane protein structure and topology. . Biochemistry 33:, 3038–3049. [CrossRef] [PubMed]
    [Google Scholar]
  26. Lacks S., Neuberger M.. ( 1975; ). Membrane location of a deoxyribonuclease implicated in the genetic transformation of Diplococcus pneumoniae. . J Bacteriol 124:, 1321–1329.[PubMed]
    [Google Scholar]
  27. Li C.-L., Hor L.-I., Chang Z.-F., Tsai L.-C., Yang W.-Z., Yuan H. S.. ( 2003; ). DNA binding and cleavage by the periplasmic nuclease Vvn: a novel structure with a known active site. . EMBO J 22:, 4014–4025. [CrossRef] [PubMed]
    [Google Scholar]
  28. Losman M. J., Fasy T. M., Novick K. E., Monestier M.. ( 1992; ). Monoclonal autoantibodies to subnucleosomes from a MRL/Mp(–)+/+ mouse. Oligoclonality of the antibody response and recognition of a determinant composed of histones H2A, H2B, and DNA. . J Immunol 148:, 1561–1569.[PubMed]
    [Google Scholar]
  29. Lun Z.-R., Wang Q.-P., Chen X.-G., Li A.-X., Zhu X.-Q.. ( 2007; ). Streptococcus suis: an emerging zoonotic pathogen. . Lancet Infect Dis 7:, 201–209. [CrossRef] [PubMed]
    [Google Scholar]
  30. Midon M., Schäfer P., Pingoud A., Ghosh M., Moon A. F., Cuneo M. J., London R. E., Meiss G.. ( 2011; ). Mutational and biochemical analysis of the DNA-entry nuclease EndA from Streptococcus pneumoniae. . Nucleic Acids Res 39:, 623–634. [CrossRef] [PubMed]
    [Google Scholar]
  31. Moon A. F., Midon M., Meiss G., Pingoud A., London R. E., Pedersen L. C.. ( 2011; ). Structural insights into catalytic and substrate binding mechanisms of the strategic EndA nuclease from Streptococcus pneumoniae. . Nucleic Acids Res 39:, 2943–2953. [CrossRef] [PubMed]
    [Google Scholar]
  32. Papayannopoulos V., Zychlinsky A.. ( 2009; ). NETs: a new strategy for using old weapons. . Trends Immunol 30:, 513–521. [CrossRef] [PubMed]
    [Google Scholar]
  33. Pettersen E. F., Goddard T. D., Huang C. C., Couch G. S., Greenblatt D. M., Meng E. C., Ferrin T. E.. ( 2004; ). UCSF Chimera – a visualization system for exploratory research and analysis. . J Comput Chem 25:, 1605–1612. [CrossRef] [PubMed]
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989; ). Molecular Cloning: A Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  35. Seele J., Singpiel A., Spoerry C., von Pawel-Rammingen U., Valentin-Weigand P., Baums C. G.. ( 2013; ). Identification of a novel host-specific IgM protease in Streptococcus suis. . J Bacteriol 195:, 930–940. [CrossRef] [PubMed]
    [Google Scholar]
  36. Smith H. E., Damman M., van der Velde J., Wagenaar F., Wisselink H. J., Stockhofe-Zurwieden N., Smits M. A.. ( 1999; ). Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. . Infect Immun 67:, 1750–1756.[PubMed]
    [Google Scholar]
  37. Sumby P., Barbian K. D., Gardner D. J., Whitney A. R., Welty D. M., Long R. D., Bailey J. R., Parnell M. J., Hoe N. P. et al. ( 2005; ). Extracellular deoxyribonuclease made by group A Streptococcus assists pathogenesis by enhancing evasion of the innate immune response. . Proc Natl Acad Sci U S A 102:, 1679–1684. [CrossRef] [PubMed]
    [Google Scholar]
  38. Takamatsu D., Osaki M., Sekizaki T.. ( 2001; ). Thermosensitive suicide vectors for gene replacement in Streptococcus suis. . Plasmid 46:, 140–148. [CrossRef] [PubMed]
    [Google Scholar]
  39. Tang J., Wang C., Feng Y., Yang W., Song H., Chen Z., Yu H., Pan X., Zhou X. et al. ( 2006; ). Streptococcal toxic shock syndrome caused by Streptococcus suis serotype 2. . PLoS Med 3:, e151. [CrossRef] [PubMed]
    [Google Scholar]
  40. Uchiyama S., Andreoni F., Schuepbach R. A., Nizet V., Zinkernagel A. S.. ( 2012; ). DNase Sda1 allows invasive M1T1 Group A Streptococcus to prevent TLR9-dependent recognition. . PLoS Pathog 8:, e1002736. [CrossRef] [PubMed]
    [Google Scholar]
  41. von Köckritz-Blickwede M., Chow O., Ghochani M., Nizet V.. ( 2010; ). Visualization and functional evaluation of phagocyte extracellular traps. . Methods Microbiol 37:, 139–160. [CrossRef]
    [Google Scholar]
  42. Wartha F., Beiter K., Normark S., Henriques-Normark B.. ( 2007; ). Neutrophil extracellular traps: casting the NET over pathogenesis. . Curr Opin Microbiol 10:, 52–56. [CrossRef] [PubMed]
    [Google Scholar]
  43. Willenborg J., Fulde M., de Greeff A., Rohde M., Smith H. E., Valentin-Weigand P., Goethe R.. ( 2011; ). Role of glucose and CcpA in capsule expression and virulence of Streptococcus suis. . Microbiology 157:, 1823–1833. [CrossRef] [PubMed]
    [Google Scholar]
  44. Williams A. E., Blakemore W. F.. ( 1990; ). Pathogenesis of meningitis caused by Streptococcus suis type 2. . J Infect Dis 162:, 474–481. [CrossRef] [PubMed]
    [Google Scholar]
  45. Wilson K.. ( 2001; ). Preparation of genomic DNA from bacteria. . In Current Protocols in Molecular Biology, pp. 2.4.1–2.4.5. Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K... New York:: Green/Wiley;. [CrossRef]
    [Google Scholar]
  46. Yu H., Jing H., Chen Z., Zheng H., Zhu X., Wang H., Wang S., Liu L., Zu R. et al. ( 2006; ). Human Streptococcus suis outbreak, Sichuan, China. . Emerg Infect Dis 12:, 914–920. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000040
Loading
/content/journal/micro/10.1099/mic.0.000040
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error