1887

Abstract

is a successful pathogen that can adapt to multiple environmental niches. As part of its repertoire of adaptive responses, two-component regulatory systems play a major role in co-ordinating gene expression at the global level. The PhoPR system controls major cellular functions, including respiration, lipid metabolism, the immediate and enduring hypoxic responses, stress responses and persistence. We identified a single nucleotide polymorphism (SNP) found in the sensor kinase (PhoR) of this system between two commonly used strains of , H37Rv (PhoR) and CDC1551 (PhoR). We constructed an isogenic strain of H37Rv carrying PhoR, as well as strains containing two different copies of the PhoPR locus, to determine the functional consequences of the SNP on phenotypic traits. The previously identified Apr locus was not acid-inducible in H37Rv, although it was in the CDC1551 strain. Surprisingly, the acid-responsive expression was not completely dependent on the PhoR SNP, and the locus remained constitutively expressed even in the isogenic strain H37Rv:PhoR. The pattern of expression in PhoPR merodiploid strains was more complex, with neither allele showing dominance. This suggests that Apr regulation is more complex than previously thought and that additional factors must be responsible for Apr upregulation in response to acid conditions. In contrast, differences we identified in cell hydrophobicity between the two strains were wholly dependent on PhoR, confirming its role as major regulator of cell wall composition. Thus the SNP in the sensor kinase has functional consequences which account for some of the differences between widely used laboratory strains.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000036
2015-04-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/4/765.html?itemId=/content/journal/micro/10.1099/mic.0.000036&mimeType=html&fmt=ahah

References

  1. Abramovitch R. B., Rohde K. H., Hsu F. F., Russell D. G.. ( 2011;). aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. . Mol Microbiol 80:, 678–694. [CrossRef][PubMed]
    [Google Scholar]
  2. Ashby M. K.. ( 2004;). Survey of the number of two-component response regulator genes in the complete and annotated genome sequences of prokaryotes. . FEMS Microbiol Lett 231:, 277–281. [CrossRef][PubMed]
    [Google Scholar]
  3. Astarie-Dequeker C., Le Guyader L., Malaga W., Seaphanh F. K., Chalut C., Lopez A., Guilhot C.. ( 2009;). Phthiocerol dimycocerosates of M. tuberculosis participate in macrophage invasion by inducing changes in the organization of plasma membrane lipids. . PLoS Pathog 5:, e1000289. [CrossRef][PubMed]
    [Google Scholar]
  4. Betts J. C., Dodson P., Quan S., Lewis A. P., Thomas P. J., Duncan K., McAdam R. A.. ( 2000;). Comparison of the proteome of Mycobacterium tuberculosis strain H37Rv with clinical isolate CDC 1551. . Microbiology 146:, 3205–3216.[PubMed]
    [Google Scholar]
  5. Bishai W. R., Dannenberg A. M. Jr, Parrish N., Ruiz R., Chen P., Zook B. C., Johnson W., Boles J. W., Pitt M. L.. ( 1999;). Virulence of Mycobacterium tuberculosis CDC1551 and H37Rv in rabbits evaluated by Lurie’s pulmonary tubercle count method. . Infect Immun 67:, 4931–4934.[PubMed]
    [Google Scholar]
  6. Brennan P. J.. ( 2003;). Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. . Tuberculosis (Edinb) 83:, 91–97. [CrossRef][PubMed]
    [Google Scholar]
  7. Carroll P., Schreuder L. J., Muwanguzi-Karugaba J., Wiles S., Robertson B. D., Ripoll J., Ward T. H., Bancroft G. J., Schaible U. E., Parish T.. ( 2010;). Sensitive detection of gene expression in mycobacteria under replicating and non-replicating conditions using optimized far-red reporters. . PLoS ONE 5:, e9823. [CrossRef][PubMed]
    [Google Scholar]
  8. Chesne-Seck M. L., Barilone N., Boudou F., Gonzalo Asensio J., Kolattukudy P. E., Martín C., Cole S. T., Gicquel B., Gopaul D. N., Jackson M.. ( 2008;). A point mutation in the two-component regulator PhoP-PhoR accounts for the absence of polyketide-derived acyltrehaloses but not that of phthiocerol dimycocerosates in Mycobacterium tuberculosis H37Ra. . J Bacteriol 190:, 1329–1334. [CrossRef][PubMed]
    [Google Scholar]
  9. Cimino M., Thomas C., Namouchi A., Dubrac S., Gicquel B., Gopaul D. N.. ( 2012;). Identification of DNA binding motifs of the Mycobacterium tuberculosis PhoP/PhoR two-component signal transduction system. . PLoS ONE 7:, e42876. [CrossRef][PubMed]
    [Google Scholar]
  10. Cole S. T., Brosch R., Parkhill J., Garnier T., Churcher C., Harris D., Gordon S. V., Eiglmeier K., Gas S. et al. ( 1998;). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. . Nature 393:, 537–544. [CrossRef][PubMed]
    [Google Scholar]
  11. Das A. K., Kumar V. A., Sevalkar R. R., Bansal R., Sarkar D.. ( 2013;). Unique N-terminal arm of Mycobacterium tuberculosis PhoP protein plays an unusual role in its regulatory function. . J Biol Chem 288:, 29182–29192. [CrossRef][PubMed]
    [Google Scholar]
  12. Fleischmann R. D., Alland D., Eisen J. A., Carpenter L., White O., Peterson J., DeBoy R., Dodson R., Gwinn M. et al. ( 2002;). Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. . J Bacteriol 184:, 5479–5490. [CrossRef][PubMed]
    [Google Scholar]
  13. Frigui W., Bottai D., Majlessi L., Monot M., Josselin E., Brodin P., Garnier T., Gicquel B., Martin C. et al. ( 2008;). Control of M. tuberculosis ESAT-6 secretion and specific T cell recognition by PhoP. . PLoS Pathog 4:, e33. [CrossRef][PubMed]
    [Google Scholar]
  14. Gao C. H., Yang M., He Z. G.. ( 2011;). An ArsR-like transcriptional factor recognizes a conserved sequence motif and positively regulates the expression of phoP in mycobacteria. . Biochem Biophys Res Commun 411:, 726–731. [CrossRef][PubMed]
    [Google Scholar]
  15. Gonzalo-Asensio J., Soto C. Y., Arbués A., Sancho J., del Carmen Menéndez M., García M. J., Gicquel B., Martín C.. ( 2008;a). The Mycobacterium tuberculosis phoPR operon is positively autoregulated in the virulent strain H37Rv. . J Bacteriol 190:, 7068–7078. [CrossRef][PubMed]
    [Google Scholar]
  16. Gonzalo-Asensio J., Mostowy S., Harders-Westerveen J., Huygen K., Hernández-Pando R., Thole J., Behr M., Gicquel B., Martín C.. ( 2008;b). PhoP: a missing piece in the intricate puzzle of Mycobacterium tuberculosis virulence. . PLoS ONE 3:, e3496. [CrossRef][PubMed]
    [Google Scholar]
  17. Gonzalo-Asensio J., Malaga W., Pawlik A., Astarie-Dequeker C., Passemar C., Moreau F., Laval F., Daffé M., Martin C. et al. ( 2014;). Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. . Proc Natl Acad Sci U S A 111:, 11491–11496. [CrossRef][PubMed]
    [Google Scholar]
  18. Goude R., Parish T.. ( 2008;a). The genetics of cell wall biosynthesis in Mycobacterium tuberculosis.. Future Microbiol 3:, 299–313. [CrossRef][PubMed]
    [Google Scholar]
  19. Goude R., Parish T.. ( 2008;b). Electroporation of mycobacteria. . In Mycobacteria Protocols, pp. 203–216. Edited by Parish T., Brown A. C... Totowa:: Humana Press;.
    [Google Scholar]
  20. Goyal R., Das A. K., Singh R., Singh P. K., Korpole S., Sarkar D.. ( 2011;). Phosphorylation of PhoP protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis.. J Biol Chem 286:, 45197–45208. [CrossRef][PubMed]
    [Google Scholar]
  21. Gupta S., Sinha A., Sarkar D.. ( 2006;). Transcriptional autoregulation by Mycobacterium tuberculosis PhoP involves recognition of novel direct repeat sequences in the regulatory region of the promoter. . FEBS Lett 580:, 5328–5338. [CrossRef][PubMed]
    [Google Scholar]
  22. Hoch J. A.. ( 2000;). Two-component and phosphorelay signal transduction. . Curr Opin Microbiol 3:, 165–170. [CrossRef][PubMed]
    [Google Scholar]
  23. Ioerger T. R., Feng Y., Ganesula K., Chen X., Dobos K. M., Fortune S., Jacobs W. R. Jr, Mizrahi V., Parish T. et al. ( 2010;). Variation among genome sequences of H37Rv strains of Mycobacterium tuberculosis from multiple laboratories. . J Bacteriol 192:, 3645–3653. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee J. S., Krause R., Schreiber J., Mollenkopf H. J., Kowall J., Stein R., Jeon B. Y., Kwak J. Y., Song M. K. et al. ( 2008;). Mutation in the transcriptional regulator PhoP contributes to avirulence of Mycobacterium tuberculosis H37Ra strain. . Cell Host Microbe 3:, 97–103. [CrossRef][PubMed]
    [Google Scholar]
  25. Leung A. S., Tran V., Wu Z., Yu X., Alexander D. C., Gao G. F., Zhu B., Liu J.. ( 2008;). Novel genome polymorphisms in BCG vaccine strains and impact on efficacy. . BMC Genomics 9:, 413. [CrossRef][PubMed]
    [Google Scholar]
  26. Ludwiczak P., Gilleron M., Bordat Y., Martin C., Gicquel B., Puzo G.. ( 2002;). Mycobacterium tuberculosis phoP mutant: lipoarabinomannan molecular structure. . Microbiology 148:, 3029–3037.[PubMed]
    [Google Scholar]
  27. Manca C., Tsenova L., Barry C. E. III, Bergtold A., Freeman S., Haslett P. A., Musser J. M., Freedman V. H., Kaplan G.. ( 1999;). Mycobacterium tuberculosis CDC1551 induces a more vigorous host response in vivo and in vitro, but is not more virulent than other clinical isolates. . J Immunol 162:, 6740–6746.[PubMed]
    [Google Scholar]
  28. Parish, T. (2014). Two component regulatory systems of mycobacteria. In Molecular Genetics of Mycobacteria. ASM Press.
  29. Parish T., Stoker N. G.. ( 1998;). Electroporation of mycobacteria. . Methods Mol Biol 101:, 129–144.[PubMed]
    [Google Scholar]
  30. Parish T., Stoker N. G.. ( 2000;). Use of a flexible cassette method to generate a double unmarked Mycobacterium tuberculosis tlyA plcABC mutant by gene replacement. . Microbiology 146:, 1969–1975.[PubMed]
    [Google Scholar]
  31. Pérez E., Samper S., Bordas Y., Guilhot C., Gicquel B., Martín C.. ( 2001;). An essential role for phoP in Mycobacterium tuberculosis virulence. . Mol Microbiol 41:, 179–187. [CrossRef][PubMed]
    [Google Scholar]
  32. Rosenberg M., Gutnick D., Rosenberg E.. ( 1980;). Adherence of bacteria to hydrocarbons: a simple method for measuring cell-surface hydrophobicity. . FEMS Microbiol Lett 9:, 29–33. [CrossRef]
    [Google Scholar]
  33. Ryndak M., Wang S., Smith I.. ( 2008;). PhoP, a key player in Mycobacterium tuberculosis virulence. . Trends Microbiol 16:, 528–534. [CrossRef][PubMed]
    [Google Scholar]
  34. Stock A. M., Robinson V. L., Goudreau P. N.. ( 2000;). Two-component signal transduction. . Annu Rev Biochem 69:, 183–215. [CrossRef][PubMed]
    [Google Scholar]
  35. Tan S., Sukumar N., Abramovitch R. B., Parish T., Russell D. G.. ( 2013;). Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. . PLoS Pathog 9:, e1003282. [CrossRef][PubMed]
    [Google Scholar]
  36. Taylor B. L., Zhulin I. B.. ( 1999;). PAS domains: internal sensors of oxygen, redox potential, and light. . Microbiol Mol Biol Rev 63:, 479–506.[PubMed]
    [Google Scholar]
  37. Valway S. E., Sanchez M. P., Shinnick T. F., Orme I., Agerton T., Hoy D., Jones J. S., Westmoreland H., Onorato I. M.. ( 1998;). An outbreak involving extensive transmission of a virulent strain of Mycobacterium tuberculosis.. N Engl J Med 338:, 633–639. [CrossRef][PubMed]
    [Google Scholar]
  38. Walters S. B., Dubnau E., Kolesnikova I., Laval F., Daffe M., Smith I.. ( 2006;). The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. . Mol Microbiol 60:, 312–330. [CrossRef][PubMed]
    [Google Scholar]
  39. Wang S., Engohang-Ndong J., Smith I.. ( 2007;). Structure of the DNA-binding domain of the response regulator PhoP from Mycobacterium tuberculosis.. Biochemistry 46:, 14751–14761. [CrossRef][PubMed]
    [Google Scholar]
  40. WHO (2013). Global tuberculosis report 2013. http://www.who.int/tb/publications/2013/en/
  41. Yu J., Tran V., Li M., Huang X., Niu C., Wang D., Zhu J., Wang J., Gao Q., Liu J.. ( 2012;). Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum.. Infect Immun 80:, 1381–1389. [CrossRef][PubMed]
    [Google Scholar]
  42. Zheng H., Lu L., Wang B., Pu S., Zhang X., Zhu G., Shi W., Zhang L., Wang H. et al. ( 2008;). Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. . PLoS ONE 3:, e2375. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000036
Loading
/content/journal/micro/10.1099/mic.0.000036
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error