1887

Abstract

-Adenosyl--methionine (AdoMet) is an essential metabolite, serving in a very wide variety of metabolic reactions. The enzyme that produces AdoMet from -methionine and ATP (methionine adenosyltransferase, MAT) is thus an attractive target for antimicrobial agents. We previously showed that a variety of methionine analogues are MAT substrates, yielding AdoMet analogues that function in specific methyltransfer reactions. However, this left open the question of whether the modified AdoMet molecules could support bacterial growth, meaning that they functioned in the full range of essential AdoMet-dependent reactions. The answer matters both for insight into the functional flexibility of key metabolic enzymes, and for drug design strategies for both MAT inhibitors and selectively toxic MAT substrates. In this study, methionine analogues were converted into AdoMet analogues, and tested with an strain lacking MAT (Δ) but that produces a heterologous AdoMet transporter. Growth that yields viable, morphologically normal cells provides exceptionally robust evidence that the analogue functions in every essential reaction in which AdoMet participates. Overall, the -adenosylated derivatives of all tested -methionine analogues modified at the carboxyl moiety, and some others as well, showed functionality sufficient to allow good growth in both rich and minimal media, with high viability and morphological normality. As the analogues were chosen based on incompatibility with the reactions via which AdoMet is used to produce acylhomoserine lactones (AHLs) for quorum sensing, these results support the possibility of using this route to selectively interfere with AHL biosynthesis without inhibiting bacterial growth.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000034
2015-03-01
2019-11-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/674.html?itemId=/content/journal/micro/10.1099/mic.0.000034&mimeType=html&fmt=ahah

References

  1. Bale S., Ealick S. E.. ( 2010;). Structural biology of S-adenosylmethionine decarboxylase. . Amino Acids 38:, 451–460. [CrossRef][PubMed]
    [Google Scholar]
  2. Barrows L. R., Magee P. N.. ( 1982;). Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. . Carcinogenesis 3:, 349–351. [CrossRef][PubMed]
    [Google Scholar]
  3. Breen R. S., Campopiano D. J., Webster S., Brunton M., Watt R., Baxter R. L.. ( 2003;). The mechanism of 7,8-diaminopelargonate synthase; the role of S-adenosylmethionine as the amino donor. . Org Biomol Chem 1:, 3498–3499. [CrossRef][PubMed]
    [Google Scholar]
  4. Cantoni G. L.. ( 1975;). Biological methylation: selected aspects. . Annu Rev Biochem 44:, 435–451. [CrossRef][PubMed]
    [Google Scholar]
  5. Cheng X., Blumenthal R. M.. ( 1999;). S-Adenosylmethionine-Dependent Methyltransferases: Structures and Functions. Singapore:: World Scientific;.
    [Google Scholar]
  6. Churchill M. E., Chen L.. ( 2011;). Structural basis of acyl-homoserine lactone-dependent signaling. . Chem Rev 111:, 68–85. [CrossRef][PubMed]
    [Google Scholar]
  7. Darmon E., Eykelenboom J. K., Lopez-Vernaza M. A., White M. A., Leach D. R.. ( 2014;). Repair on the go: E. coli maintains a high proliferation rate while repairing a chronic DNA double-strand break. . PLoS ONE 9:, e110784. [CrossRef][PubMed]
    [Google Scholar]
  8. Defoirdt T., Boon N., Bossier P.. ( 2010;). Can bacteria evolve resistance to quorum sensing disruption?. PLoS Pathog 6:, e1000989. [CrossRef][PubMed]
    [Google Scholar]
  9. Driskell L. O., Tucker A. M., Winkler H. H., Wood D. O.. ( 2005;). Rickettsial metK-encoded methionine adenosyltransferase expression in an Escherichia coli metK deletion strain. . J Bacteriol 187:, 5719–5722. [CrossRef][PubMed]
    [Google Scholar]
  10. El-Hajj Z. W., Reyes-Lamothe R., Newman E. B.. ( 2013;). Cell division, one-carbon metabolism and methionine synthesis in a metK-deficient Escherichia coli mutant, and a role for MmuM. . Microbiology 159:, 2036–2048. [CrossRef][PubMed]
    [Google Scholar]
  11. Fontecave M., Atta M., Mulliez E.. ( 2004;). S-adenosylmethionine: nothing goes to waste. . Trends Biochem Sci 29:, 243–249. [CrossRef][PubMed]
    [Google Scholar]
  12. Galloway W. R., Hodgkinson J. T., Bowden S. D., Welch M., Spring D. R.. ( 2011;). Quorum sensing in Gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. . Chem Rev 111:, 28–67. [CrossRef][PubMed]
    [Google Scholar]
  13. Gerdt J. P., Blackwell H. E.. ( 2014;). Competition studies confirm two major barriers that can preclude the spread of resistance to quorum-sensing inhibitors in bacteria. . ACS Chem Biol 9:, 2291–2299. [CrossRef][PubMed]
    [Google Scholar]
  14. Hill N. S., Buske P. J., Shi Y., Levin P. A.. ( 2013;). A moonlighting enzyme links Escherichia coli cell size with central metabolism. . PLoS Genet 9:, e1003663. [CrossRef][PubMed]
    [Google Scholar]
  15. Hodgkinson J. T., Galloway W. R., Wright M., Mati I. K., Nicholson R. L., Welch M., Spring D. R.. ( 2012;). Design, synthesis and biological evaluation of non-natural modulators of quorum sensing in Pseudomonas aeruginosa. . Org Biomol Chem 10:, 6032–6044. [CrossRef][PubMed]
    [Google Scholar]
  16. Kalia V. C.. ( 2013;). Quorum sensing inhibitors: an overview. . Biotechnol Adv 31:, 224–245. [CrossRef][PubMed]
    [Google Scholar]
  17. Lam H., Oh D. C., Cava F., Takacs C. N., Clardy J., de Pedro M. A., Waldor M. K.. ( 2009;). d-Amino acids govern stationary phase cell wall remodeling in bacteria. . Science 325:, 1552–1555. [CrossRef][PubMed]
    [Google Scholar]
  18. Lescat M., Hoede C., Clermont O., Garry L., Darlu P., Tuffery P., Denamur E., Picard B.. ( 2009;). aes, the gene encoding the esterase B in Escherichia coli, is a powerful phylogenetic marker of the species. . BMC Microbiol 9:, 273. [CrossRef][PubMed]
    [Google Scholar]
  19. Masuda I., Sakaguchi R., Liu C., Gamper H., Hou Y. M.. ( 2013;). The temperature sensitivity of a mutation in the essential tRNA modification enzyme tRNA methyltransferase D (TrmD). . J Biol Chem 288:, 28987–28996. [CrossRef][PubMed]
    [Google Scholar]
  20. Neidhardt F. C., Bloch P. L., Smith D. F.. ( 1974;). Culture medium for enterobacteria. . J Bacteriol 119:, 736–747.[PubMed]
    [Google Scholar]
  21. Obermann W., Höltje J. V.. ( 1994;). Alterations of murein structure and of penicillin-binding proteins in minicells from Escherichia coli. . Microbiology 140:, 79–87. [CrossRef][PubMed]
    [Google Scholar]
  22. Pajares M. A., Markham G. D.. ( 2011;). Methionine adenosyltransferase (S-adenosylmethionine synthetase). . Adv Enzymol Relat Areas Mol Biol 78:, 449–521.[PubMed]
    [Google Scholar]
  23. Parveen N., Cornell K. A.. ( 2011;). Methylthioadenosine/S-adenosylhomocysteine nucleosidase, a critical enzyme for bacterial metabolism. . Mol Microbiol 79:, 7–20. [CrossRef][PubMed]
    [Google Scholar]
  24. Pegg A. E.. ( 2009;). S-Adenosylmethionine decarboxylase. . Essays Biochem 46:, 25–46. [CrossRef][PubMed]
    [Google Scholar]
  25. Perez-Leal O., Moncada C., Clarkson A. B., Merali S.. ( 2011;). Pneumocystis S-adenosylmethionine transport: a potential drug target. . Am J Respir Cell Mol Biol 45:, 1142–1146. [CrossRef][PubMed]
    [Google Scholar]
  26. Pierucci O.. ( 1978;). Dimensions of Escherichia coli at various growth rates: model for envelope growth. . J Bacteriol 135:, 559–574.[PubMed]
    [Google Scholar]
  27. Posnick L. M., Samson L. D.. ( 1999;). Influence of S-adenosylmethionine pool size on spontaneous mutation, Dam methylation, and cell growth of Escherichia coli. . J Bacteriol 181:, 6756–6762.[PubMed]
    [Google Scholar]
  28. Robert L., Hoffmann M., Krell N., Aymerich S., Robert J., Doumic M.. ( 2014;). Division in Escherichia coli is triggered by a size-sensing rather than a timing mechanism. . BMC Biol 12:, 17. [CrossRef][PubMed]
    [Google Scholar]
  29. Rutherford S. T., Bassler B. L.. ( 2012;). Bacterial quorum sensing: its role in virulence and possibilities for its control. . Cold Spring Harb Perspect Med 2:, a012427. [CrossRef][PubMed]
    [Google Scholar]
  30. Schubert H. L., Blumenthal R. M., Cheng X.. ( 2003;). Many paths to methyltransfer: a chronicle of convergence. . Trends Biochem Sci 28:, 329–335. [CrossRef][PubMed]
    [Google Scholar]
  31. Seiflein T. A., Lawrence J. G.. ( 2001;). Methionine-to-cysteine recycling in Klebsiella aerogenes. . J Bacteriol 183:, 336–346. [CrossRef][PubMed]
    [Google Scholar]
  32. Sezonov G., Joseleau-Petit D., D’Ari R.. ( 2007;). Escherichia coli physiology in Luria-Bertani broth. . J Bacteriol 189:, 8746–8749. [CrossRef][PubMed]
    [Google Scholar]
  33. Taylor J. C., Bock C. W., Takusagawa F., Markham G. D.. ( 2009;). Discovery of novel types of inhibitors of S-adenosylmethionine synthesis by virtual screening. . J Med Chem 52:, 5967–5973. [CrossRef][PubMed]
    [Google Scholar]
  34. Truscott R. J., Mizdrak J., Friedrich M. G., Hooi M. Y., Lyons B., Jamie J. F., Davies M. J., Wilmarth P. A., David L. L.. ( 2012;). Is protein methylation in the human lens a result of non-enzymatic methylation by S-adenosylmethionine?. Exp Eye Res 99:, 48–54. [CrossRef][PubMed]
    [Google Scholar]
  35. Tucker A. M., Winkler H. H., Driskell L. O., Wood D. O.. ( 2003;). S-Adenosylmethionine transport in Rickettsia prowazekii. . J Bacteriol 185:, 3031–3035. [CrossRef][PubMed]
    [Google Scholar]
  36. Walsby C. J., Ortillo D., Broderick W. E., Broderick J. B., Hoffman B. M.. ( 2002;). An anchoring role for FeS clusters: chelation of the amino acid moiety of S-adenosylmethionine to the unique iron site of the [4Fe–4S] cluster of pyruvate formate-lyase activating enzyme. . J Am Chem Soc 124:, 11270–11271. [CrossRef][PubMed]
    [Google Scholar]
  37. Wang S., Arends S. J., Weiss D. S., Newman E. B.. ( 2005;). A deficiency in S-adenosylmethionine synthetase interrupts assembly of the septal ring in Escherichia coli K-12. . Mol Microbiol 58:, 791–799. [CrossRef][PubMed]
    [Google Scholar]
  38. Wijayasinghe Y. S., Blumenthal R. M., Viola R. E.. ( 2014;). Producing proficient methyl donors from alternative substrates of S-adenosylmethionine synthetase. . Biochemistry 53:, 1521–1526. [CrossRef][PubMed]
    [Google Scholar]
  39. Zano S. P., Bhansali P., Luniwal A., Viola R. E.. ( 2013;). Alternative substrates selective for S-adenosylmethionine synthetases from pathogenic bacteria. . Arch Biochem Biophys 536:, 64–71. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000034
Loading
/content/journal/micro/10.1099/mic.0.000034
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error