1887

Abstract

In sp. FR-008, the biosynthetic gene cluster of the polyene antibiotic FR-008, also known as candicidin, consists of 21 genes, including four regulatory genes, . Our bioinformatics analyses indicate that FscRI has an N-terminal PAS domain, whereas the other three regulators have N-terminal AAA domains and are members of the LAL (large ATP-binding regulators of the LuxR type) family. Deletion of abolished the production of FR-008, with production restored in the complemented strain, supporting a critical role for FscRI in FR-008 biosynthesis. Consistent with these findings, transcription of genes involved in the biosynthesis and efflux of FR-008 was greatly downregulated in a Δ mutant. Interestingly, the regulatory gene was also downregulated in the Δ mutant. Production of FR-008 was reduced, but not abrogated, in an deletion mutant, and although structural genes were downregulated in Δ, the changes were much less dramatic than in Δ, suggesting a stronger regulatory role for FscRI. Remarkably, transcription of was also decreased in Δ. Expression of restored antibiotic production in a Δ mutant, but not vice versa. Putative binding sequences for FscRI were identified upstream of and the three structural genes , and , which encode large modular polyketide synthases. Our findings suggest that and are interregulatory, whereas expression of and appears to be independent of and . This study demonstrates that the regulation of polyene antibiotic synthesis can involve mutually regulated transcriptional activators that belong to different families.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000033
2015-03-01
2019-11-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/539.html?itemId=/content/journal/micro/10.1099/mic.0.000033&mimeType=html&fmt=ahah

References

  1. Antón N., Mendes M. V., Martín J. F., Aparicio J. F.. ( 2004;). Identification of PimR as a positive regulator of pimaricin biosynthesis in Streptomyces natalensis. . J Bacteriol 186:, 2567–2575. [CrossRef][PubMed]
    [Google Scholar]
  2. Antón N., Santos-Aberturas J., Mendes M. V., Guerra S. M., Martín J. F., Aparicio J. F.. ( 2007;). PimM, a PAS domain positive regulator of pimaricin biosynthesis in Streptomyces natalensis. . Microbiology 153:, 3174–3183. [CrossRef][PubMed]
    [Google Scholar]
  3. Aparicio J. F., Fouces R., Mendes M. V., Olivera N., Martín J. F.. ( 2000;). A complex multienzyme system encoded by five polyketide synthase genes is involved in the biosynthesis of the 26-membered polyene macrolide pimaricin in Streptomyces natalensis. . Chem Biol 7:, 895–905. [CrossRef][PubMed]
    [Google Scholar]
  4. Aparicio J. F., Caffrey P., Gil J. A., Zotchev S. B.. ( 2003;). Polyene antibiotic biosynthesis gene clusters. . Appl Microbiol Biotechnol 61:, 179–188. [CrossRef][PubMed]
    [Google Scholar]
  5. Bolard J.. ( 1986;). How do the polyene macrolide antibiotics affect the cellular membrane properties?. Biochim Biophys Acta 864:, 257–304. [CrossRef][PubMed]
    [Google Scholar]
  6. Brautaset T., Sekurova O. N., Sletta H., Ellingsen T. E., Strøm A. R., Valla S., Zotchev S. B.. ( 2000;). Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. . Chem Biol 7:, 395–403. [CrossRef][PubMed]
    [Google Scholar]
  7. Caffrey P., Lynch S., Flood E., Finnan S., Oliynyk M.. ( 2001;). Amphotericin biosynthesis in Streptomyces nodosus: deductions from analysis of polyketide synthase and late genes. . Chem Biol 8:, 713–723. [CrossRef][PubMed]
    [Google Scholar]
  8. Campelo A. B., Gil J. A.. ( 2002;). The candicidin gene cluster from Streptomyces griseus IMRU 3570. . Microbiology 148:, 51–59.[PubMed]
    [Google Scholar]
  9. Carmody M., Byrne B., Murphy B., Breen C., Lynch S., Flood E., Finnan S., Caffrey P.. ( 2004;). Analysis and manipulation of amphotericin biosynthetic genes by means of modified phage KC515 transduction techniques. . Gene 343:, 107–115. [CrossRef][PubMed]
    [Google Scholar]
  10. Chen S., Huang X., Zhou X., Bai L., He J., Jeong K. J., Lee S. Y., Deng Z.. ( 2003;). Organizational and mutational analysis of a complete FR-008/candicidin gene cluster encoding a structurally related polyene complex. . Chem Biol 10:, 1065–1076. [CrossRef][PubMed]
    [Google Scholar]
  11. Du Y. L., Chen S. F., Cheng L. Y., Shen X. L., Tian Y., Li Y. Q.. ( 2009;). Identification of a novel Streptomyces chattanoogensis L10 and enhancing its natamycin production by overexpressing positive regulator ScnRII. . J Microbiol 47:, 506–513. [CrossRef][PubMed]
    [Google Scholar]
  12. Gil J. A., Campelo-Diez A. B.. ( 2003;). Candicidin biosynthesis in Streptomyces griseus. . Appl Microbiol Biotechnol 60:, 633–642. [CrossRef][PubMed]
    [Google Scholar]
  13. Gupte M., Kulkarni P., Ganguli B. N.. ( 2002;). Antifungal antibiotics. . Appl Microbiol Biotechnol 58:, 46–57. [CrossRef][PubMed]
    [Google Scholar]
  14. He Y., Wang Z., Bai L., Liang J., Zhou X., Deng Z.. ( 2010;). Two pHZ1358-derivative vectors for efficient gene knockout in streptomyces. . J Microbiol Biotechnol 20:, 678–682. [CrossRef][PubMed]
    [Google Scholar]
  15. Hopwood D. A.. ( 2007;). Streptomyces in Nature and Medicine. Oxford:: Oxford University Press;.
    [Google Scholar]
  16. Ikeda H., Ishikawa J., Hanamoto A., Shinose M., Kikuchi H., Shiba T., Sakaki Y., Hattori M., Omura S.. ( 2003;). Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. . Nat Biotechnol 21:, 526–531. [CrossRef][PubMed]
    [Google Scholar]
  17. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A.. ( 2000;). Practical Streptomyces Genetics. Norwich:: John Innes Foundation;.
    [Google Scholar]
  18. Kim B. G., Lee M. J., Seo J., Hwang Y. B., Lee M. Y., Han K., Sherman D. H., Kim E. S.. ( 2009;). Identification of functionally clustered nystatin-like biosynthetic genes in a rare actinomycetes, Pseudonocardia autotrophica. . J Ind Microbiol Biotechnol 36:, 1425–1434. [CrossRef][PubMed]
    [Google Scholar]
  19. Knirschová R., Nováková R., Fecková L., Timko J., Turna J., Bistáková J., Kormanec J.. ( 2007;). Multiple regulatory genes in the salinomycin biosynthetic gene cluster of Streptomyces albus CCM 4719. . Folia Microbiol (Praha) 52:, 359–365. [CrossRef][PubMed]
    [Google Scholar]
  20. Li R., Xie Z., Tian Y., Yang H., Chen W., You D., Liu G., Deng Z., Tan H.. ( 2009;). polR, a pathway-specific transcriptional regulatory gene, positively controls polyoxin biosynthesis in Streptomyces cacaoi subsp. asoensis. . Microbiology 155:, 1819–1831. [CrossRef][PubMed]
    [Google Scholar]
  21. Liu G., Tian Y., Yang H., Tan H.. ( 2005;). A pathway-specific transcriptional regulatory gene for nikkomycin biosynthesis in Streptomyces ansochromogenes that also influences colony development. . Mol Microbiol 55:, 1855–1866. [CrossRef][PubMed]
    [Google Scholar]
  22. Sambrook J.. ( 2001;). Molecular Cloning: a Laboratory Manual, , 3rd edn.. New York:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  23. Santos-Aberturas J., Payero T. D., Vicente C. M., Guerra S. M., Cañibano C., Martín J. F., Aparicio J. F.. ( 2011a;). Functional conservation of PAS-LuxR transcriptional regulators in polyene macrolide biosynthesis. . Metab Eng 13:, 756–767. [CrossRef][PubMed]
    [Google Scholar]
  24. Santos-Aberturas J., Vicente C. M., Guerra S. M., Payero T. D., Martín J. F., Aparicio J. F.. ( 2011b;). Molecular control of polyene macrolide biosynthesis: direct binding of the regulator PimM to eight promoters of pimaricin genes and identification of binding boxes. . J Biol Chem 286:, 9150–9161. [CrossRef][PubMed]
    [Google Scholar]
  25. Sekurova O. N., Brautaset T., Sletta H., Borgos S. E., Jakobsen M Ø. M., Ellingsen T. E., Strøm A. R., Valla S., Zotchev S. B.. ( 2004;). In vivo analysis of the regulatory genes in the nystatin biosynthetic gene cluster of Streptomyces noursei ATCC 11455 reveals their differential control over antibiotic biosynthesis. . J Bacteriol 186:, 1345–1354. [CrossRef][PubMed]
    [Google Scholar]
  26. Taylor B. L., Zhulin I. B.. ( 1999;). PAS domains: internal sensors of oxygen, redox potential, and light. . Microbiol Mol Biol Rev 63:, 479–506.[PubMed]
    [Google Scholar]
  27. Wilson D. J., Xue Y., Reynolds K. A., Sherman D. H.. ( 2001;). Characterization and analysis of the PikD regulatory factor in the pikromycin biosynthetic pathway of Streptomyces venezuelae. . J Bacteriol 183:, 3468–3475. [CrossRef][PubMed]
    [Google Scholar]
  28. Zhang P., Wu H., Chen X. L., Deng Z., Bai L., Pang X.. ( 2014;). Regulation of the biosynthesis of thiopeptide antibiotic cyclothiazomycin by the transcriptional regulator SHJG8833 in Streptomyces hygroscopicus 5008. . Microbiology 160:, 1379–1392. [CrossRef][PubMed]
    [Google Scholar]
  29. Zhang Y., Bai L., Deng Z.. ( 2009;). Functional characterization of the first two actinomycete 4-amino-4-deoxychorismate lyase genes. . Microbiology 155:, 2450–2459. [CrossRef][PubMed]
    [Google Scholar]
  30. Zotchev S. B.. ( 2003;). Polyene macrolide antibiotics and their applications in human therapy. . Curr Med Chem 10:, 211–223. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000033
Loading
/content/journal/micro/10.1099/mic.0.000033
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error