1887

Abstract

Stress conditions, such as a block in fatty acid synthesis, signal bacterial cells to exit the cell cycle. FabH is a cell-cycle-regulated β-ketoacyl-acyl carrier protein synthase that initiates lipid biosynthesis and is essential for growth in rich media. To explore how responds to a block in lipid biosynthesis, we created a FabH-depletion strain. We found that FabH depletion blocks lipid biosynthesis in rich media and causes a cell cycle arrest that requires the alarmone (p)ppGpp for adaptation. Notably, basal levels of (p)ppGpp coordinate both a reduction in cell volume and a block in the over-initiation of DNA replication in response to FabH depletion. The gene encodes a master transcription factor that directly regulates 95 cell-cycle-controlled genes while also functioning to inhibit the initiation of DNA replication. Here, we demonstrate that transcription is (p)ppGpp-dependent during fatty acid starvation. CtrA fails to accumulate when FabH is depleted in the absence of (p)ppGpp due to a substantial reduction in transcription. The (p)ppGpp-dependent maintenance of transcription during fatty acid starvation initiated from only one of the two promoters. In the absence of (p)ppGpp, the majority of FabH-depleted cells enter a viable but non-culturable state, with multiple chromosomes, and are unable to recover from the miscoordination of cell cycle events. Thus, basal levels of (p)ppGpp facilitate re-entry into the cell cycle after termination of fatty acid starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000032
2015-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/553.html?itemId=/content/journal/micro/10.1099/mic.0.000032&mimeType=html&fmt=ahah

References

  1. Argueta C., Yuksek K., Patel R., Summers M. L.. ( 2006;). Identification of Nostoc punctiforme akinete-expressed genes using differential display. . Mol Microbiol 61:, 748–757. [CrossRef][PubMed]
    [Google Scholar]
  2. Battesti A., Bouveret E.. ( 2006;). Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. . Mol Microbiol 62:, 1048–1063. [CrossRef][PubMed]
    [Google Scholar]
  3. Boutte C. C., Crosson S.. ( 2011;). The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. . Mol Microbiol 80:, 695–714. [CrossRef][PubMed]
    [Google Scholar]
  4. Boutte C. C., Henry J. T., Crosson S.. ( 2012;). ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. . J Bacteriol 194:, 28–35. [CrossRef][PubMed]
    [Google Scholar]
  5. Britos L., Abeliuk E., Taverner T., Lipton M., McAdams H., Shapiro L.. ( 2011;). Regulatory response to carbon starvation in Caulobacter crescentus. . PLoS ONE 6:, e18179. [CrossRef][PubMed]
    [Google Scholar]
  6. Campos M., Surovtsev I. V., Kato S., Paintdakhi A., Beltran B., Ebmeier S. E., Jacobs-Wagner C.. ( 2014;). A constant size extension drives bacterial cell size homeostasis. . Cell 159:, 1433–1446. [CrossRef][PubMed]
    [Google Scholar]
  7. Chen Y. E., Tropini C., Jonas K., Tsokos C. G., Huang K. C., Laub M. T.. ( 2011;). Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. . Proc Natl Acad Sci U S A 108:, 1052–1057. [CrossRef][PubMed]
    [Google Scholar]
  8. Chiaramello A. E., Zyskind J. W.. ( 1990;). Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. . J Bacteriol 172:, 2013–2019.[PubMed]
    [Google Scholar]
  9. Christen B., Abeliuk E., Collier J. M., Kalogeraki V. S., Passarelli B., Coller J. A., Fero M. J., McAdams H. H., Shapiro L.. ( 2011;). The essential genome of a bacterium. . Mol Syst Biol 7:, 528. [CrossRef][PubMed]
    [Google Scholar]
  10. Collier J.. ( 2012;). Regulation of chromosomal replication in Caulobacter crescentus. . Plasmid 67:, 76–87. [CrossRef][PubMed]
    [Google Scholar]
  11. Collier J., Shapiro L.. ( 2009;). Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. . J Bacteriol 191:, 5706–5716. [CrossRef][PubMed]
    [Google Scholar]
  12. Collier J., McAdams H. H., Shapiro L.. ( 2007;). A DNA methylation ratchet governs progression through a bacterial cell cycle. . Proc Natl Acad Sci U S A 104:, 17111–17116. [CrossRef][PubMed]
    [Google Scholar]
  13. Contreras I., Bender R. A., Mansour J., Henry S., Shapiro L.. ( 1979;). Caulobacter crescentus mutant defective in membrane phospholipid synthesis. . J Bacteriol 140:, 612–619.[PubMed]
    [Google Scholar]
  14. Cuajungco M. P., Podevin W., Valluri V. K., Bui Q., Nguyen V. H., Taylor K.. ( 2012;). Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. . Acta Histochem 114:, 705–712. [CrossRef][PubMed]
    [Google Scholar]
  15. Dalebroux Z. D., Swanson M. S.. ( 2012;). ppGpp: magic beyond RNA polymerase. . Nat Rev Microbiol 10:, 203–212. [CrossRef][PubMed]
    [Google Scholar]
  16. Dawson M. P., Humphrey B. A., Marshall K. C.. ( 1981;). Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. . Curr Microbiol 6:, 195–199. [CrossRef]
    [Google Scholar]
  17. Domian I. J., Quon K. C., Shapiro L.. ( 1997;). Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. . Cell 90:, 415–424. [CrossRef][PubMed]
    [Google Scholar]
  18. Domian I. J., Reisenauer A., Shapiro L.. ( 1999;). Feedback control of a master bacterial cell-cycle regulator. . Proc Natl Acad Sci U S A 96:, 6648–6653. [CrossRef][PubMed]
    [Google Scholar]
  19. Ely B.. ( 1991;). Genetics of Caulobacter crescentus. . Methods Enzymol 204:, 372–384. [CrossRef][PubMed]
    [Google Scholar]
  20. Evinger M., Agabian N.. ( 1977;). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. . J Bacteriol 132:, 294–301.[PubMed]
    [Google Scholar]
  21. Fernandez-Fernandez C., Gonzalez D., Collier J.. ( 2011;). Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. . PLoS ONE 6:, e26028. [CrossRef][PubMed]
    [Google Scholar]
  22. Fernandez-Fernandez C., Grosse K., Sourjik V., Collier J.. ( 2013;). The β-sliding clamp directs the localization of HdaA to the replisome in Caulobacter crescentus. . Microbiology 159:, 2237–2248. [CrossRef][PubMed]
    [Google Scholar]
  23. Gong L., Takayama K., Kjelleberg S.. ( 2002;). Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria. . Microbiology 148:, 559–570.[PubMed]
    [Google Scholar]
  24. Gonzalez D., Collier J.. ( 2014;). Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. . J Bacteriol 196:, 2514–2525. [CrossRef][PubMed]
    [Google Scholar]
  25. Gorbatyuk B., Marczynski G. T.. ( 2005;). Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. . Mol Microbiol 55:, 1233–1245. [CrossRef][PubMed]
    [Google Scholar]
  26. Hill N. S., Kadoya R., Chattoraj D. K., Levin P. A.. ( 2012;). Cell size and the initiation of DNA replication in bacteria. . PLoS Genet 8:, e1002549. [CrossRef][PubMed]
    [Google Scholar]
  27. Holtzendorff J., Hung D., Brende P., Reisenauer A., Viollier P. H., McAdams H. H., Shapiro L.. ( 2004;). Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. . Science 304:, 983–987. [CrossRef][PubMed]
    [Google Scholar]
  28. Iniesta A. A., McGrath P. T., Reisenauer A., McAdams H. H., Shapiro L.. ( 2006;). A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. . Proc Natl Acad Sci U S A 103:, 10935–10940. [CrossRef][PubMed]
    [Google Scholar]
  29. Jonas K., Liu J., Chien P., Laub M. T.. ( 2013;). Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. . Cell 154:, 623–636. [CrossRef][PubMed]
    [Google Scholar]
  30. Kim Y., Li H., Binkowski T. A., Holzle D., Joachimiak A.. ( 2009;). Crystal structure of fatty acid/phospholipid synthesis protein PlsX from Enterococcus faecalis. . J Struct Funct Genomics 10:, 157–163. [CrossRef][PubMed]
    [Google Scholar]
  31. Lesley J. A., Shapiro L.. ( 2008;). SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. . J Bacteriol 190:, 6867–6880. [CrossRef][PubMed]
    [Google Scholar]
  32. McGrath P. T., Iniesta A. A., Ryan K. R., Shapiro L., McAdams H. H.. ( 2006;). A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. . Cell 124:, 535–547. [CrossRef][PubMed]
    [Google Scholar]
  33. McGrath P. T., Lee H., Zhang L., Iniesta A. A., Hottes A. K., Tan M. H., Hillson N. J., Hu P., Shapiro L., McAdams H. H.. ( 2007;). High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. . Nat Biotechnol 25:, 584–592. [CrossRef][PubMed]
    [Google Scholar]
  34. Miller J. H.. ( 1972;). Experiments in Molecular Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  35. My L., Rekoske B., Lemke J. J., Viala J. P., Gourse R. L., Bouveret E.. ( 2013;). Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. . J Bacteriol 195:, 3784–3795. [CrossRef][PubMed]
    [Google Scholar]
  36. O’Neill E. A., Bender R. A.. ( 1987;). Periodic synthesis of phospholipids during the Caulobacter crescentus cell cycle. . J Bacteriol 169:, 2618–2623.[PubMed]
    [Google Scholar]
  37. O’Neill E. A., Bender R. A.. ( 1989;). Cell-cycle-dependent polar morphogenesis in Caulobacter crescentus: roles of phospholipid, DNA, and protein syntheses. . J Bacteriol 171:, 4814–4820.[PubMed]
    [Google Scholar]
  38. Podkovyrov S. M., Larson T. J.. ( 1996;). Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli. . Nucleic Acids Res 24:, 1747–1752. [CrossRef][PubMed]
    [Google Scholar]
  39. Potrykus K., Cashel M.. ( 2008;). (p)ppGpp: still magical?. Annu Rev Microbiol 62:, 35–51. [CrossRef][PubMed]
    [Google Scholar]
  40. Price A. C., Choi K. H., Heath R. J., Li Z., White S. W., Rock C. O.. ( 2001;). Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. . J Biol Chem 276:, 6551–6559. [CrossRef][PubMed]
    [Google Scholar]
  41. Reisenauer A., Shapiro L.. ( 2002;). DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. . EMBO J 21:, 4969–4977. [CrossRef][PubMed]
    [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual, , 2nd edn.. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  43. Schredl A. T., Perez Mora Y. G., Herrera A., Cuajungco M. P., Murray S. R.. ( 2012;). The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication. . Microbiology 158:, 2492–2503. [CrossRef][PubMed]
    [Google Scholar]
  44. Seyfzadeh M., Keener J., Nomura M.. ( 1993;). spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. . Proc Natl Acad Sci U S A 90:, 11004–11008. [CrossRef][PubMed]
    [Google Scholar]
  45. Srivatsan A., Wang J. D.. ( 2008;). Control of bacterial transcription, translation and replication by (p)ppGpp. . Curr Opin Microbiol 11:, 100–105. [CrossRef][PubMed]
    [Google Scholar]
  46. Tan M. H., Kozdon J. B., Shen X., Shapiro L., McAdams H. H.. ( 2010;). An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation. . Proc Natl Acad Sci U S A 107:, 18985–18990. [CrossRef][PubMed]
    [Google Scholar]
  47. Thanbichler M., Shapiro L.. ( 2006;). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. . Cell 126:, 147–162. [CrossRef][PubMed]
    [Google Scholar]
  48. Thanbichler M., Iniesta A. A., Shapiro L.. ( 2007;). A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. . Nucleic Acids Res 35:, e137. [CrossRef][PubMed]
    [Google Scholar]
  49. Traxler M. F., Summers S. M., Nguyen H. T., Zacharia V. M., Hightower G. A., Smith J. T., Conway T.. ( 2008;). The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. . Mol Microbiol 68:, 1128–1148. [CrossRef][PubMed]
    [Google Scholar]
  50. Weart R. B., Lee A. H., Chien A. C., Haeusser D. P., Hill N. S., Levin P. A.. ( 2007;). A metabolic sensor governing cell size in bacteria. . Cell 130:, 335–347. [CrossRef][PubMed]
    [Google Scholar]
  51. Winzeler E., Shapiro L.. ( 1995;). Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle. . J Mol Biol 251:, 346–365. [CrossRef][PubMed]
    [Google Scholar]
  52. Yao Z., Davis R. M., Kishony R., Kahne D., Ruiz N.. ( 2012;). Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. . Proc Natl Acad Sci U S A 109:, E2561–E2568. [CrossRef][PubMed]
    [Google Scholar]
  53. Zhang Y. M., White S. W., Rock C. O.. ( 2006;). Inhibiting bacterial fatty acid synthesis. . J Biol Chem 281:, 17541–17544. [CrossRef][PubMed]
    [Google Scholar]
  54. Zyskind J. W., Smith D. W.. ( 1992;). DNA replication, the bacterial cell cycle, and cell growth. . Cell 69:, 5–8. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000032
Loading
/content/journal/micro/10.1099/mic.0.000032
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error