1887

Abstract

Stress conditions, such as a block in fatty acid synthesis, signal bacterial cells to exit the cell cycle. FabH is a cell-cycle-regulated β-ketoacyl-acyl carrier protein synthase that initiates lipid biosynthesis and is essential for growth in rich media. To explore how responds to a block in lipid biosynthesis, we created a FabH-depletion strain. We found that FabH depletion blocks lipid biosynthesis in rich media and causes a cell cycle arrest that requires the alarmone (p)ppGpp for adaptation. Notably, basal levels of (p)ppGpp coordinate both a reduction in cell volume and a block in the over-initiation of DNA replication in response to FabH depletion. The gene encodes a master transcription factor that directly regulates 95 cell-cycle-controlled genes while also functioning to inhibit the initiation of DNA replication. Here, we demonstrate that transcription is (p)ppGpp-dependent during fatty acid starvation. CtrA fails to accumulate when FabH is depleted in the absence of (p)ppGpp due to a substantial reduction in transcription. The (p)ppGpp-dependent maintenance of transcription during fatty acid starvation initiated from only one of the two promoters. In the absence of (p)ppGpp, the majority of FabH-depleted cells enter a viable but non-culturable state, with multiple chromosomes, and are unable to recover from the miscoordination of cell cycle events. Thus, basal levels of (p)ppGpp facilitate re-entry into the cell cycle after termination of fatty acid starvation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000032
2015-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/553.html?itemId=/content/journal/micro/10.1099/mic.0.000032&mimeType=html&fmt=ahah

References

  1. Argueta C., Yuksek K., Patel R., Summers M. L.(2006). Identification of Nostoc punctiforme akinete-expressed genes using differential display. Mol Microbiol 61, 748757. [View Article][PubMed] [Google Scholar]
  2. Battesti A., Bouveret E.(2006). Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism. Mol Microbiol 62, 10481063. [View Article][PubMed] [Google Scholar]
  3. Boutte C. C., Crosson S.(2011). The complex logic of stringent response regulation in Caulobacter crescentus: starvation signalling in an oligotrophic environment. Mol Microbiol 80, 695714. [View Article][PubMed] [Google Scholar]
  4. Boutte C. C., Henry J. T., Crosson S.(2012). ppGpp and polyphosphate modulate cell cycle progression in Caulobacter crescentus. J Bacteriol 194, 2835. [View Article][PubMed] [Google Scholar]
  5. Britos L., Abeliuk E., Taverner T., Lipton M., McAdams H., Shapiro L.(2011). Regulatory response to carbon starvation in Caulobacter crescentus. PLoS ONE 6, e18179. [View Article][PubMed] [Google Scholar]
  6. Campos M., Surovtsev I. V., Kato S., Paintdakhi A., Beltran B., Ebmeier S. E., Jacobs-Wagner C.(2014). A constant size extension drives bacterial cell size homeostasis. Cell 159, 14331446. [View Article][PubMed] [Google Scholar]
  7. Chen Y. E., Tropini C., Jonas K., Tsokos C. G., Huang K. C., Laub M. T.(2011). Spatial gradient of protein phosphorylation underlies replicative asymmetry in a bacterium. Proc Natl Acad Sci U S A 108, 10521057. [View Article][PubMed] [Google Scholar]
  8. Chiaramello A. E., Zyskind J. W.(1990). Coupling of DNA replication to growth rate in Escherichia coli: a possible role for guanosine tetraphosphate. J Bacteriol 172, 20132019.[PubMed] [Google Scholar]
  9. Christen B., Abeliuk E., Collier J. M., Kalogeraki V. S., Passarelli B., Coller J. A., Fero M. J., McAdams H. H., Shapiro L.(2011). The essential genome of a bacterium. Mol Syst Biol 7, 528. [View Article][PubMed] [Google Scholar]
  10. Collier J.(2012). Regulation of chromosomal replication in Caulobacter crescentus. Plasmid 67, 7687. [View Article][PubMed] [Google Scholar]
  11. Collier J., Shapiro L.(2009). Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol 191, 57065716. [View Article][PubMed] [Google Scholar]
  12. Collier J., McAdams H. H., Shapiro L.(2007). A DNA methylation ratchet governs progression through a bacterial cell cycle. Proc Natl Acad Sci U S A 104, 1711117116. [View Article][PubMed] [Google Scholar]
  13. Contreras I., Bender R. A., Mansour J., Henry S., Shapiro L.(1979). Caulobacter crescentus mutant defective in membrane phospholipid synthesis. J Bacteriol 140, 612619.[PubMed] [Google Scholar]
  14. Cuajungco M. P., Podevin W., Valluri V. K., Bui Q., Nguyen V. H., Taylor K.(2012). Abnormal accumulation of human transmembrane (TMEM)-176A and 176B proteins is associated with cancer pathology. Acta Histochem 114, 705712. [View Article][PubMed] [Google Scholar]
  15. Dalebroux Z. D., Swanson M. S.(2012). ppGpp: magic beyond RNA polymerase. Nat Rev Microbiol 10, 203212. [View Article][PubMed] [Google Scholar]
  16. Dawson M. P., Humphrey B. A., Marshall K. C.(1981). Adhesion: a tactic in the survival strategy of a marine vibrio during starvation. Curr Microbiol 6, 195199. [View Article] [Google Scholar]
  17. Domian I. J., Quon K. C., Shapiro L.(1997). Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell 90, 415424. [View Article][PubMed] [Google Scholar]
  18. Domian I. J., Reisenauer A., Shapiro L.(1999). Feedback control of a master bacterial cell-cycle regulator. Proc Natl Acad Sci U S A 96, 66486653. [View Article][PubMed] [Google Scholar]
  19. Ely B.(1991). Genetics of Caulobacter crescentus. Methods Enzymol 204, 372384. [View Article][PubMed] [Google Scholar]
  20. Evinger M., Agabian N.(1977). Envelope-associated nucleoid from Caulobacter crescentus stalked and swarmer cells. J Bacteriol 132, 294301.[PubMed] [Google Scholar]
  21. Fernandez-Fernandez C., Gonzalez D., Collier J.(2011). Regulation of the activity of the dual-function DnaA protein in Caulobacter crescentus. PLoS ONE 6, e26028. [View Article][PubMed] [Google Scholar]
  22. Fernandez-Fernandez C., Grosse K., Sourjik V., Collier J.(2013). The β-sliding clamp directs the localization of HdaA to the replisome in Caulobacter crescentus. Microbiology 159, 22372248. [View Article][PubMed] [Google Scholar]
  23. Gong L., Takayama K., Kjelleberg S.(2002). Role of spoT-dependent ppGpp accumulation in the survival of light-exposed starved bacteria. Microbiology 148, 559570.[PubMed] [Google Scholar]
  24. Gonzalez D., Collier J.(2014). Effects of (p)ppGpp on the progression of the cell cycle of Caulobacter crescentus. J Bacteriol 196, 25142525. [View Article][PubMed] [Google Scholar]
  25. Gorbatyuk B., Marczynski G. T.(2005). Regulated degradation of chromosome replication proteins DnaA and CtrA in Caulobacter crescentus. Mol Microbiol 55, 12331245. [View Article][PubMed] [Google Scholar]
  26. Hill N. S., Kadoya R., Chattoraj D. K., Levin P. A.(2012). Cell size and the initiation of DNA replication in bacteria. PLoS Genet 8, e1002549. [View Article][PubMed] [Google Scholar]
  27. Holtzendorff J., Hung D., Brende P., Reisenauer A., Viollier P. H., McAdams H. H., Shapiro L.(2004). Oscillating global regulators control the genetic circuit driving a bacterial cell cycle. Science 304, 983987. [View Article][PubMed] [Google Scholar]
  28. Iniesta A. A., McGrath P. T., Reisenauer A., McAdams H. H., Shapiro L.(2006). A phospho-signaling pathway controls the localization and activity of a protease complex critical for bacterial cell cycle progression. Proc Natl Acad Sci U S A 103, 1093510940. [View Article][PubMed] [Google Scholar]
  29. Jonas K., Liu J., Chien P., Laub M. T.(2013). Proteotoxic stress induces a cell-cycle arrest by stimulating Lon to degrade the replication initiator DnaA. Cell 154, 623636. [View Article][PubMed] [Google Scholar]
  30. Kim Y., Li H., Binkowski T. A., Holzle D., Joachimiak A.(2009). Crystal structure of fatty acid/phospholipid synthesis protein PlsX from Enterococcus faecalis. J Struct Funct Genomics 10, 157163. [View Article][PubMed] [Google Scholar]
  31. Lesley J. A., Shapiro L.(2008). SpoT regulates DnaA stability and initiation of DNA replication in carbon-starved Caulobacter crescentus. J Bacteriol 190, 68676880. [View Article][PubMed] [Google Scholar]
  32. McGrath P. T., Iniesta A. A., Ryan K. R., Shapiro L., McAdams H. H.(2006). A dynamically localized protease complex and a polar specificity factor control a cell cycle master regulator. Cell 124, 535547. [View Article][PubMed] [Google Scholar]
  33. McGrath P. T., Lee H., Zhang L., Iniesta A. A., Hottes A. K., Tan M. H., Hillson N. J., Hu P., Shapiro L., McAdams H. H.(2007). High-throughput identification of transcription start sites, conserved promoter motifs and predicted regulons. Nat Biotechnol 25, 584592. [View Article][PubMed] [Google Scholar]
  34. Miller J. H.(1972).Experiments in Molecular Genetics. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. [Google Scholar]
  35. My L., Rekoske B., Lemke J. J., Viala J. P., Gourse R. L., Bouveret E.(2013). Transcription of the Escherichia coli fatty acid synthesis operon fabHDG is directly activated by FadR and inhibited by ppGpp. J Bacteriol 195, 37843795. [View Article][PubMed] [Google Scholar]
  36. O’Neill E. A., Bender R. A.(1987). Periodic synthesis of phospholipids during the Caulobacter crescentus cell cycle. J Bacteriol 169, 26182623.[PubMed] [Google Scholar]
  37. O’Neill E. A., Bender R. A.(1989). Cell-cycle-dependent polar morphogenesis in Caulobacter crescentus: roles of phospholipid, DNA, and protein syntheses. J Bacteriol 171, 48144820.[PubMed] [Google Scholar]
  38. Podkovyrov S. M., Larson T. J.(1996). Identification of promoter and stringent regulation of transcription of the fabH, fabD and fabG genes encoding fatty acid biosynthetic enzymes of Escherichia coli. Nucleic Acids Res 24, 17471752. [View Article][PubMed] [Google Scholar]
  39. Potrykus K., Cashel M.(2008). (p)ppGpp: still magical?Annu Rev Microbiol 62, 3551. [View Article][PubMed] [Google Scholar]
  40. Price A. C., Choi K. H., Heath R. J., Li Z., White S. W., Rock C. O.(2001). Inhibition of β-ketoacyl-acyl carrier protein synthases by thiolactomycin and cerulenin. Structure and mechanism. J Biol Chem 276, 65516559. [View Article][PubMed] [Google Scholar]
  41. Reisenauer A., Shapiro L.(2002). DNA methylation affects the cell cycle transcription of the CtrA global regulator in Caulobacter. EMBO J 21, 49694977. [View Article][PubMed] [Google Scholar]
  42. Sambrook J., Fritsch E. F., Maniatis T.(1989).Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. [Google Scholar]
  43. Schredl A. T., Perez Mora Y. G., Herrera A., Cuajungco M. P., Murray S. R.(2012). The Caulobacter crescentus ctrA P1 promoter is essential for the coordination of cell cycle events that prevent the overinitiation of DNA replication. Microbiology 158, 24922503. [View Article][PubMed] [Google Scholar]
  44. Seyfzadeh M., Keener J., Nomura M.(1993). spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli. Proc Natl Acad Sci U S A 90, 1100411008. [View Article][PubMed] [Google Scholar]
  45. Srivatsan A., Wang J. D.(2008). Control of bacterial transcription, translation and replication by (p)ppGpp. Curr Opin Microbiol 11, 100105. [View Article][PubMed] [Google Scholar]
  46. Tan M. H., Kozdon J. B., Shen X., Shapiro L., McAdams H. H.(2010). An essential transcription factor, SciP, enhances robustness of Caulobacter cell cycle regulation. Proc Natl Acad Sci U S A 107, 1898518990. [View Article][PubMed] [Google Scholar]
  47. Thanbichler M., Shapiro L.(2006). MipZ, a spatial regulator coordinating chromosome segregation with cell division in Caulobacter. Cell 126, 147162. [View Article][PubMed] [Google Scholar]
  48. Thanbichler M., Iniesta A. A., Shapiro L.(2007). A comprehensive set of plasmids for vanillate- and xylose-inducible gene expression in Caulobacter crescentus. Nucleic Acids Res 35, e137. [View Article][PubMed] [Google Scholar]
  49. Traxler M. F., Summers S. M., Nguyen H. T., Zacharia V. M., Hightower G. A., Smith J. T., Conway T.(2008). The global, ppGpp-mediated stringent response to amino acid starvation in Escherichia coli. Mol Microbiol 68, 11281148. [View Article][PubMed] [Google Scholar]
  50. Weart R. B., Lee A. H., Chien A. C., Haeusser D. P., Hill N. S., Levin P. A.(2007). A metabolic sensor governing cell size in bacteria. Cell 130, 335347. [View Article][PubMed] [Google Scholar]
  51. Winzeler E., Shapiro L.(1995). Use of flow cytometry to identify a Caulobacter 4.5 S RNA temperature-sensitive mutant defective in the cell cycle. J Mol Biol 251, 346365. [View Article][PubMed] [Google Scholar]
  52. Yao Z., Davis R. M., Kishony R., Kahne D., Ruiz N.(2012). Regulation of cell size in response to nutrient availability by fatty acid biosynthesis in Escherichia coli. Proc Natl Acad Sci U S A 109, E2561E2568. [View Article][PubMed] [Google Scholar]
  53. Zhang Y. M., White S. W., Rock C. O.(2006). Inhibiting bacterial fatty acid synthesis. J Biol Chem 281, 1754117544. [View Article][PubMed] [Google Scholar]
  54. Zyskind J. W., Smith D. W.(1992). DNA replication, the bacterial cell cycle, and cell growth. Cell 69, 58. [View Article][PubMed] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000032
Loading
/content/journal/micro/10.1099/mic.0.000032
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error