1887

Abstract

From a tomb in Upper Egypt we isolated a strain of that was capable of producing brown pigment when grown in a minimal salts medium containing tyrosine. We present evidence that this pigment is a pyomelanin, a compound that is known to assist in the survival of some micro-organisms in adverse environments. We tested type strains of which were also able to produce this pigment under similar conditions. Inhibitors of the DHN and DOPA melanin pathways were unable to inhibit the formation of the pigment. Fourier transform IR analysis indicated that this brown pigment is similar to pyomelanin. Pyrolysis-GC/MS revealed the presence of phenolic compounds. Using LC/MS, homogentisic acid, the monomeric precursor of pyomelanin, was detected in supernatants of cultures growing in tyrosine medium but not in cultures lacking tyrosine. Partial regions of the genes encoding two enzymes in the homogentisic acid pathway of tyrosine degradation were amplified. Data from reverse-transcription PCR demonstrated that transcription was increased in cultures grown in tyrosine medium, suggesting that tyrosine induced the transcription.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000030
2015-06-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/6/1211.html?itemId=/content/journal/micro/10.1099/mic.0.000030&mimeType=html&fmt=ahah

References

  1. Abarenkov K., Henrik Nilsson R., Larsson K.-H., Alexander I. J., Eberhardt U., Erland S., Høiland K., Kjøller R., Larsson E. et al. ( 2010; ). The UNITE database for molecular identification of fungi – recent updates and future perspectives. . New Phytol 186:, 281–285. [CrossRef] [PubMed]
    [Google Scholar]
  2. Alexopoulos C. J., Mims C. W., Blackwell M. M.. ( 1996; ). Phylum Ascomycota: Filamentous Ascomycetes-Order Eurotiales and Related Species. . In Introductory Mycology, 4th edn, pp. 294–322. New York:: Wiley;.
    [Google Scholar]
  3. Almeida-Paes R., Frases S., Araújo G. S., de Oliveira M. M., Gerfen G. J., Nosanchuk J. D., Zancopé-Oliveira R. M.. ( 2012; ). Biosynthesis and functions of a melanoid pigment produced by species of the Sporothrix complex in the presence of l-tyrosine. . Appl Environ Microbiol 78:, 8623–8630. [CrossRef] [PubMed]
    [Google Scholar]
  4. Arias-Barrau E., Olivera E. R., Luengo J. M., Fernández C., Galán B., García J. L., Díaz E., Miñambres B.. ( 2004; ). The homogentisate pathway: a central catabolic pathway involved in the degradation of l-phenylalanine, l-tyrosine, and 3-hydroxyphenylacetate in Pseudomonas putida. . J Bacteriol 186:, 5062–5077. [CrossRef] [PubMed]
    [Google Scholar]
  5. Bell A. A., Wheeler M. H.. ( 1986; ). Biosynthesis and functions of fungal melanins. . Annu Rev Phytopathol 24:, 411–451. [CrossRef]
    [Google Scholar]
  6. Butler M. J., Day A. W.. ( 1998; ). Fungal melanins: a review. . Can J Microbiol 44:, 1115–1136. [CrossRef]
    [Google Scholar]
  7. Carreira A., Ferreira L. M., Loureiro V.. ( 2001; ). Production of brown tyrosine pigments by the yeast Yarrowia lipolytica. . J Appl Microbiol 90:, 372–379. [CrossRef] [PubMed]
    [Google Scholar]
  8. Eisenman H. C., Casadevall A.. ( 2012; ). Synthesis and assembly of fungal melanin. . Appl Microbiol Biotechnol 93:, 931–940. [CrossRef] [PubMed]
    [Google Scholar]
  9. Fleming A.. ( 1929; ). On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. . Br J Exp Pathol 10:, 226–236.
    [Google Scholar]
  10. Hamilton A. J., Gomez B. L.. ( 2002; ). Melanins in fungal pathogens. . J Med Microbiol 51:, 189–191.[PubMed]
    [Google Scholar]
  11. Hunter R. C., Newman D. K.. ( 2010; ). A putative ABC transporter, HatABCDE, is among molecular determinants of pyomelanin production in Pseudomonas aeruginosa. . J Bacteriol 192:, 5962–5971. [CrossRef] [PubMed]
    [Google Scholar]
  12. Keith K. E., Killip L., He P., Moran G. R., Valvano M. A.. ( 2007; ). Burkholderia cenocepacia C5424 produces a pigment with antioxidant properties using a homogentisate intermediate. . J Bacteriol 189:, 9057–9065. [CrossRef] [PubMed]
    [Google Scholar]
  13. Keller S., Macheleidt J., Scherlach K., Schmaler-Ripcke J., Jacobsen I. D., Heinekamp T., Brakhage A. A.. ( 2011; ). Pyomelanin formation in Aspergillus fumigatus requires HmgX and the transcriptional activator HmgR but is dispensable for virulence. . PLoS ONE 6:, e26604. [CrossRef] [PubMed]
    [Google Scholar]
  14. Liu D., Wei L., Guo T., Tan W.. ( 2014; ). Detection of DOPA-melanin in the dimorphic fungal pathogen Penicillium marneffei and its effect on macrophage phagocytosis in vitro. . PLoS ONE 9:, e92610. [CrossRef] [PubMed]
    [Google Scholar]
  15. Méndez V., Agulló L., González M., Seeger M.. ( 2011; ). The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400. . PLoS ONE 6:, e17583. [CrossRef] [PubMed]
    [Google Scholar]
  16. Moyer A. J., May O. E., Herrick H. T.. ( 1936; ). The production of gluconic acid by Penicillium chrysogenum. . Zentralbl Bakteriol 95:, 311–324.
    [Google Scholar]
  17. O’Sullivan C. Y., Pirt S. J.. ( 1973; ). Penicillin production by lysine auxotrophs of Penicillium chrysogenum. . J Gen Microbiol 76:, 65–75. [CrossRef] [PubMed]
    [Google Scholar]
  18. Rodríguez-Rojas A., Mena A., Martín S., Borrell N., Oliver A., Blázquez J.. ( 2009; ). Inactivation of the hmgA gene of Pseudomonas aeruginosa leads to pyomelanin hyperproduction, stress resistance and increased persistence in chronic lung infection. . Microbiology 155:, 1050–1057. [CrossRef] [PubMed]
    [Google Scholar]
  19. Schmaler-Ripcke J., Sugareva V., Gebhardt P., Winkler R., Kniemeyer O., Heinekamp T., Brakhage A. A.. ( 2009; ). Production of pyomelanin, a second type of melanin, via the tyrosine degradation pathway in Aspergillus fumigatus. . Appl Environ Microbiol 75:, 493–503. [CrossRef] [PubMed]
    [Google Scholar]
  20. Stein S. E.. ( 2013; ). Mass Spectra. . In NIST Chemistry WebBook, NIST Standard Reference Database number 69. Edited by Linstrom P. J., Mallard W. G... Gaithersburg MD:: National Institute of Standards and Technology;. http://webbook.nist.gov [accessed 12 September 2013]
    [Google Scholar]
  21. Steinert M., Flügel M., Schuppler M., Helbig J. H., Supriyono A., Proksch P., Lück P. C.. ( 2001; ). The Lly protein is essential for p-hydroxyphenylpyruvate dioxygenase activity in Legionella pneumophila. . FEMS Microbiol Lett 203:, 41–47. [CrossRef] [PubMed]
    [Google Scholar]
  22. Turick C. E., Tisa L. S., Caccavo F. Jr. ( 2002; ). Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as a terminal electron acceptor by Shewanella algae BrY. . Appl Environ Microbiol 68:, 2436–2444. [CrossRef] [PubMed]
    [Google Scholar]
  23. Turick C. E., Caccavo F. Jr, Tisa L. S.. ( 2003; ). Electron transfer from Shewanella algae BrY to hydrous ferric oxide is mediated by cell-associated melanin. . FEMS Microbiol Lett 220:, 99–104. [CrossRef] [PubMed]
    [Google Scholar]
  24. Turick C. E., Caccavo F. Jr, Tisa L. S.. ( 2008; a). Pyomelanin is produced by Shewanella algae BrY and affected by exogenous iron. . Can J Microbiol 54:, 334–339. [CrossRef] [PubMed]
    [Google Scholar]
  25. Turick C. E., Knox A. S., Leverette C. L., Kritzas Y. G.. ( 2008; b). In situ uranium stabilization by microbial metabolites. . J Environ Radioact 99:, 890–899. [CrossRef] [PubMed]
    [Google Scholar]
  26. Turick C. E., Beliaev A. S., Zakrajsek B. A., Reardon C. L., Lowy D. A., Poppy T. E., Maloney A., Ekechukwu A. A.. ( 2009; ). The role of 4-hydroxyphenylpyruvate dioxygenase in enhancement of solid-phase electron transfer by Shewanella oneidensis MR-1. . FEMS Microbiol Ecol 68:, 223–225. [CrossRef] [PubMed]
    [Google Scholar]
  27. Turick C. E., Knox A. S., Becnel J. M., Ekechukwu A. A., Milliken C. E.. ( 2010; ). Properties and function of pyomelanin. . In Biopolymers, pp. 449–472. Edited by Elnashar M... Rijeka, Croatia: Intech.; http://www.intechopen.com/books/biopolymers/properties-and-function-of-pyomelanin [CrossRef]
    [Google Scholar]
  28. van den Berg M. A., Albang R., Albermann K., Badger J. H., Daran J.-M., Driessen A. J. M., Garcia-Estrada C., Fedorova N. D., Harris D. M. et al. ( 2008; ). Genome sequencing and analysis of the filamentous fungus Penicillium chrysogenum. . Nat Biotechnol 26:, 1161–1168. [CrossRef] [PubMed]
    [Google Scholar]
  29. Vasanthakumar A., DeAraujo A., Mazurek J., Schilling M., Mitchell R.. ( 2013; ). Microbiological survey for analysis of the brown spots on the walls of the tomb of King Tutankhamun. . Int Biodet Biodegr 79:, 56–63. [CrossRef]
    [Google Scholar]
  30. White T. J., Bruns T., Lee S., Taylor J. W.. ( 1990; ). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. . In PCR Protocols: a Guide to Methods and Applications, pp. 315–322. Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J... New York:: Academic Press;. [CrossRef]
    [Google Scholar]
  31. Yabuuchi E., Ohyama A.. ( 1972; ). Characterization of ‘pyomelanin’-producing strains of Pseudomonas aeruginosa. . IJSEM 22:, 53–64. [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000030
Loading
/content/journal/micro/10.1099/mic.0.000030
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error