1887

Abstract

The present study was conducted to determine the potential of five cyanobacteria strains isolated from aquatic zones to induce lipid production. The phylogenetic affiliation of the isolates was determined by 16S rRNA gene sequencing. Amongst the isolates, an efficient cyanobacterium, sp. HS01 showing maximal biomass and lipid productivity, was selected for further studies. In order to compare lipid productivity, the HS01 strain was grown in different media to screen potential significant culture ingredients and to evaluate mixotrophic cultivation. Mixotrophic cultivation of the strain using ostrich oil as a carbon source resulted in the best lipid productivity. GC analysis of fatty acid methyl esters of the selected cyanobacterial strain grown in media supplemented with ostrich oil showed a high content of C16 (palmitoleic acid and palmitic acid) and C18 (linoleic acid, oleic acid and linolenic acid) fatty acids of 42.7 and 42.8 %, respectively. Transmission electron micrographs showed that the HS01 cells exhibited an elongated rod-shaped appearance, either isolated, paired, linearly connected or in small clusters. According to initial experiments, ostrich oil, NaNO and NaCl were recognized as potential essential nutrients and selected for optimization of media with the goal of maximizing lipid productivity. A culture optimization technique using the response surface method demonstrated a maximum lipid productivity of 56.5 mg l day. This value was 2.82-fold higher than that for the control, and was achieved in medium containing 1.12 g l NaNO, 1 % (v/v) ostrich oil and 0.09 % (w/v) NaCl.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000025
2015-03-01
2019-11-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/662.html?itemId=/content/journal/micro/10.1099/mic.0.000025&mimeType=html&fmt=ahah

References

  1. Abdelaziz A. E. M., Ghosh D., Hallenbeck P. C.. ( 2014;). Characterization of growth and lipid production by Chlorella sp. PCH90, a microalga native to Quebec. . Bioresour Technol 156:, 20–28. [CrossRef][PubMed]
    [Google Scholar]
  2. Abreu A. P., Fernandes B., Vicente A. A., Teixeira J., Dragone G.. ( 2012;). Mixotrophic cultivation of Chlorella vulgaris using industrial dairy waste as organic carbon source. . Bioresour Technol 118:, 61–66. [CrossRef][PubMed]
    [Google Scholar]
  3. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J.. ( 1990;). Basic local alignment search tool. . J Mol Biol 215:, 403–410. [CrossRef][PubMed]
    [Google Scholar]
  4. Bhatnagar A., Chinnasamy S., Singh M., Das K.. ( 2011;). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. . Appl Energy 88:, 3425–3431. [CrossRef]
    [Google Scholar]
  5. Bligh E. G., Dyer W. J.. ( 1959;). A rapid method of total lipid extraction and purification. . Can J Biochem Physiol 37:, 911–917. [CrossRef][PubMed]
    [Google Scholar]
  6. Chen C. Y., Yeh K. L., Aisyah R., Lee D. J., Chang J. S.. ( 2011;). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. . Bioresour Technol 102:, 71–81. [CrossRef][PubMed]
    [Google Scholar]
  7. Costa J. A. V., de Morais M. G.. ( 2011;). The role of biochemical engineering in the production of biofuels from microalgae. . Bioresour Technol 102:, 2–9. [CrossRef][PubMed]
    [Google Scholar]
  8. Da Rós P. C., Silva C. S., Silva-Stenico M. E., Fiore M. F., De Castro H. F.. ( 2013;). Assessment of chemical and physico-chemical properties of cyanobacterial lipids for biodiesel production. . Mar Drugs 11:, 2365–2381. [CrossRef][PubMed]
    [Google Scholar]
  9. de Loura I. C., Dubacq J. P., Thomas J. C.. ( 1987;). The effects of nitrogen deficiency on pigments and lipids of cyanobacteria. . Plant Physiol 83:, 838–843. [CrossRef][PubMed]
    [Google Scholar]
  10. Dean A. P., Sigee D. C., Estrada B., Pittman J. K.. ( 2010;). Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae. . Bioresour Technol 101:, 4499–4507. [CrossRef][PubMed]
    [Google Scholar]
  11. Feng P., Deng Z., Fan L., Hu Z.. ( 2012;). Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. . J Biosci Bioeng 114:, 405–410. [CrossRef][PubMed]
    [Google Scholar]
  12. Francisco E. C., Franco T. T., Wagner R., Jacob-Lopes E.. ( 2014;). Assessment of different carbohydrates as exogenous carbon source in cultivation of cyanobacteria. . Bioprocess Biosyst Eng 37:, 1497–1505. [CrossRef][PubMed]
    [Google Scholar]
  13. Griffiths M. J., Harrison S. T.. ( 2009;). Lipid productivity as a key characteristic for choosing algal species for biodiesel production. . J Appl Phycol 21:, 493–507. [CrossRef]
    [Google Scholar]
  14. Guclu Z., Ertan O. O.. ( 2012;). Toxicity and removal of zinc in the three species (Acutodesmus obliquus, Desmodesmus subspicatus and Desmodesmus armatus) belonging to the family, Scenedesmaceae (Chlorophyta). . Turk J Fish Aquat Sci 12:, 309–314. [CrossRef]
    [Google Scholar]
  15. Hajfarajollah H., Mokhtarani B., Mortaheb H., Afaghi A.. ( 2014;). Vitamin B12 biosynthesis over waste frying sunflower oil as a cost effective and renewable substrate. . J Food Sci Techol. [CrossRef]
    [Google Scholar]
  16. Karatay S. E., Dönmez G.. ( 2011;). Microbial oil production from thermophile cyanobacteria for biodiesel production. . Appl Energy 88:, 3632–3635. [CrossRef]
    [Google Scholar]
  17. Knoop H., Zilliges Y., Lockau W., Steuer R.. ( 2010;). The metabolic network of Synechocystis sp. PCC 6803: systemic properties of autotrophic growth. . Plant Physiol 154:, 410–422. [CrossRef][PubMed]
    [Google Scholar]
  18. Knothe G.. ( 2006;). Analyzing biodiesel: standards and other methods. . J Am Oil Chem Soc 83:, 823–833. [CrossRef]
    [Google Scholar]
  19. Laurens L. M., Wolfrum E. J.. ( 2011;). Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. . BioEnergy Res 4:, 22–35. [CrossRef]
    [Google Scholar]
  20. Machado I. M. P., Atsumi S.. ( 2012;). Cyanobacterial biofuel production. . J Biotechnol 162:, 50–56. [CrossRef][PubMed]
    [Google Scholar]
  21. Mackey S. R., Choi J. S., Kitayama Y., Iwasaki H., Dong G., Golden S. S.. ( 2008;). Proteins found in a CikA interaction assay link the circadian clock, metabolism, and cell division in Synechococcus elongatus. . J Bacteriol 190:, 3738–3746. [CrossRef][PubMed]
    [Google Scholar]
  22. Parmar A., Singh N. K., Pandey A., Gnansounou E., Madamwar D.. ( 2011;). Cyanobacteria and microalgae: a positive prospect for biofuels. . Bioresour Technol 102:, 10163–10172. [CrossRef][PubMed]
    [Google Scholar]
  23. Patel V. K., Maji D., Singh A. K., Suseela M., Sundaram S., Kalra A.. ( 2014;). A natural plant growth promoter, calliterpenone, enhances growth and biomass, carbohydrate, and lipid production in cyanobacterium Synechocystis PCC 6803. . J Appl Phycol 26:, 279–286. [CrossRef]
    [Google Scholar]
  24. Patil P. D., Gude V. G., Mannarswamy A., Deng S., Cooke P., Munson-McGee S., Rhodes I., Lammers P., Nirmalakhandan N.. ( 2011;). Optimization of direct conversion of wet algae to biodiesel under supercritical methanol conditions. . Bioresour Technol 102:, 118–122. [CrossRef][PubMed]
    [Google Scholar]
  25. Patnaik S., Samocha T., Davis D., Bullis R., Browdy C.. ( 2006;). The use of HUFA-rich algal meals in diets for Litopenaeus vannamei. . Aquacult Nutr 12:, 395–401. [CrossRef]
    [Google Scholar]
  26. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y.. ( 1979;). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. . J Gen Microbiol 111:, 1–61. [CrossRef]
    [Google Scholar]
  27. Rittmann B. E.. ( 2008;). Opportunities for renewable bioenergy using microorganisms. . Biotechnol Bioeng 100:, 203–212. [CrossRef][PubMed]
    [Google Scholar]
  28. Rosenberg J. N., Kobayashi N., Barnes A., Noel E. A., Betenbaugh M. J., Oyler G. A.. ( 2014;). Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. . PLoS One 9:, e92460. [CrossRef][PubMed]
    [Google Scholar]
  29. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sanders R. W., Porter K. G., Caron D. A.. ( 1990;). Relationship between phototrophy and phagotrophy in the mixotrophic chrysophyte Poterioochromonas malhamensis. . Microb Ecol 19:, 97–109. [CrossRef][PubMed]
    [Google Scholar]
  31. Schenk P. M., Thomas-Hall S. R., Stephens E., Marx U. C., Mussgnug J. H., Posten C., Kruse O., Hankamer B.. ( 2008;). Second generation biofuels: high-efficiency microalgae for biodiesel production. . BioEnergy Res 1:, 20–43. [CrossRef]
    [Google Scholar]
  32. Silva C. S. P., Silva-Stenico M. E., Fiore M. F., de Castro H. F., Da Rós P. C. M.. ( 2014;). Optimization of the cultivation conditions for Synechococcus sp. PCC7942 (cyanobacterium) to be used as feedstock for biodiesel production. . Algal Res 3:, 1–7. [CrossRef]
    [Google Scholar]
  33. Singh D. K., Mallick N.. ( 2014;). Accumulation potential of lipids and analysis of fatty acid profile of few microalgal species for biodiesel feedstock. . J Microbiol Biotech Res 4:, 37–44.
    [Google Scholar]
  34. Tandeau de Marsac N., Houmard J.. ( 1993;). Adaptation of cyanobacteria to environmental stimuli: new steps towards molecular mechanisms. . FEMS Microbiol Lett 104:, 119–189. [CrossRef]
    [Google Scholar]
  35. Valério E., Chambel L., Paulino S., Faria N., Pereira P., Tenreiro R.. ( 2009;). Molecular identification, typing and traceability of cyanobacteria from freshwater reservoirs. . Microbiology 155:, 642–656. [CrossRef][PubMed]
    [Google Scholar]
  36. Volkman J. K., Barrett S. M., Blackburn S. I., Mansour M. P., Sikes E. L., Gelin F.. ( 1998;). Microalgal biomarkers: a review of recent research developments. . Org Geochem 29:, 1163–1179. [CrossRef]
    [Google Scholar]
  37. Wan M., Liu P., Xia J., Rosenberg J. N., Oyler G. A., Betenbaugh M. J., Nie Z., Qiu G.. ( 2011;). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. . Appl Microbiol Biotechnol 91:, 835–844. [CrossRef][PubMed]
    [Google Scholar]
  38. Wan M. X., Wang R. M., Xia J. L., Rosenberg J. N., Nie Z. Y., Kobayashi N., Oyler G. A., Betenbaugh M. J.. ( 2012;). Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. . Biotechnol Bioeng 109:, 1958–1964. [CrossRef][PubMed]
    [Google Scholar]
  39. Wase N., Black P. N., Stanley B. A., DiRusso C. C.. ( 2014;). Integrated quantitative analysis of nitrogen stress response in Chlamydomonas reinhardtii using metabolite and protein profiling. . J Proteome Res 13:, 1373–1396. [CrossRef][PubMed]
    [Google Scholar]
  40. Williams J. P., Maissan E., Mitchell K., Khan M. U.. ( 1990;). The manipulation of the fatty acid composition of glycerolipids in cyanobacteria using exogenous fatty acids. . Plant Cell Physiol 31:, 495–503.
    [Google Scholar]
  41. Yang J., Xu M., Zhang X., Hu Q., Sommerfeld M., Chen Y.. ( 2011;). Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. . Bioresour Technol 102:, 159–165. [CrossRef][PubMed]
    [Google Scholar]
  42. Zheng Y., Chi Z., Lucker B., Chen S.. ( 2012;). Two-stage heterotrophic and phototrophic culture strategy for algal biomass and lipid production. . Bioresour Technol 103:, 484–488. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000025
Loading
/content/journal/micro/10.1099/mic.0.000025
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error