1887

Abstract

Most colicins kill cells by membrane pore formation or nuclease activity and, superficially, the mechanisms are similar: receptor binding, translocon recruitment, periplasmic receptor binding and membrane insertion. However, in detail, they employ a wide variety of molecular interactions that reveal a high degree of evolutionary diversification. Group A colicins bind to members of the TolQRAB complex in the periplasm and heterotrimeric complexes of colicin–TolA–TolB have been observed for both ColA and ColE9. ColN, the smallest and simplest pore-forming colicin, binds only to TolA and we show here that it uses the binding site normally used by TolB, effectively preventing formation of the larger complex used by other colicins. ColN binding to TolA was by β-strand addition with a of 1 µM compared with 40 µM for the TolA–TolB interaction. The β-strand addition and ColN activity could be abolished by single proline point mutations in TolA, which each removed one backbone hydrogen bond. By also blocking TolA–TolB binding these point mutations conferred a complete phenotype which destabilized the outer membrane, prevented both ColA and ColE9 activity, and abolished phage protein binding to TolA. These are the only point mutations known to have such pleiotropic effects and showed that the TolA–TolB β-strand addition is essential for Tol function. The formation of this simple binary ColN–TolA complex provided yet more evidence of a distinct translocation route for ColN and may help to explain the unique toxicity of its N-terminal domain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000024
2015-03-01
2019-11-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/503.html?itemId=/content/journal/micro/10.1099/mic.0.000024&mimeType=html&fmt=ahah

References

  1. Abergel C., Bouveret E., Claverie J. M., Brown K., Rigal A., Lazdunski C., Bénédetti H.. ( 1999;). Structure of the Escherichia coli TolB protein determined by MAD methods at 1.95 A resolution. . Structure 7:, 1291–1300. [CrossRef][PubMed]
    [Google Scholar]
  2. Anderluh G., Hong Q., Boetzel R., MacDonald C., Moore G. R., Virden R., Lakey J. H.. ( 2003;). Concerted folding and binding of a flexible colicin domain to its periplasmic receptor TolA. . J Biol Chem 278:, 21860–21868. [CrossRef][PubMed]
    [Google Scholar]
  3. Anderluh G., Gökçe I., Lakey J. H.. ( 2004;). A natively unfolded toxin domain uses its receptor as a folding template. . J Biol Chem 279:, 22002–22009. [CrossRef][PubMed]
    [Google Scholar]
  4. Baty D., Pattus F., Parker M., Benedetti H., Frenette M., Bourdineaud J. P., Cavard D., Knibiehler M., Lazdunski C.. ( 1990;). Uptake across the cell envelope and insertion into the inner membrane of ion channel-forming colicins in E coli. . Biochimie 72:, 123–130. [CrossRef][PubMed]
    [Google Scholar]
  5. Bonsor D. A., Hecht O., Vankemmelbeke M., Sharma A., Krachler A. M., Housden N. G., Lilly K. J., James R., Moore G. R., Kleanthous C.. ( 2009;). Allosteric β-propeller signalling in TolB and its manipulation by translocating colicins. . EMBO J 28:, 2846–2857. [CrossRef][PubMed]
    [Google Scholar]
  6. Bouveret E., Derouiche R., Rigal A., Lloubès R., Lazdunski C., Bénédetti H.. ( 1995;). Peptidoglycan-associated lipoprotein-TolB interaction. A possible key to explaining the formation of contact sites between the inner and outer membranes of Escherichia coli.. J Biol Chem 270:, 11071–11077. [CrossRef][PubMed]
    [Google Scholar]
  7. Bouveret E., Rigal A., Lazdunski C., Bénédetti H.. ( 1998;). Distinct regions of the colicin A translocation domain are involved in the interaction with TolA and TolB proteins upon import into Escherichia coli.. Mol Microbiol 27:, 143–157. [CrossRef][PubMed]
    [Google Scholar]
  8. Carr S., Penfold C. N., Bamford V., James R., Hemmings A. M.. ( 2000;). The structure of TolB, an essential component of the tol-dependent translocation system, and its protein-protein interaction with the translocation domain of colicin E9. . Structure 8:, 57–66. [CrossRef][PubMed]
    [Google Scholar]
  9. Cascales E., Gavioli M., Sturgis J. N., Lloubès R.. ( 2000;). Proton motive force drives the interaction of the inner membrane TolA and outer membrane pal proteins in Escherichia coli.. Mol Microbiol 38:, 904–915. [CrossRef][PubMed]
    [Google Scholar]
  10. Cascales E., Buchanan S. K., Duché D., Kleanthous C., Lloubès R., Postle K., Riley M., Slatin S., Cavard D.. ( 2007;). Colicin biology. . Microbiol Mol Biol Rev 71:, 158–229. [CrossRef][PubMed]
    [Google Scholar]
  11. Chen Y. H., Yang J. T.. ( 1971;). A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism. . Biochem Biophys Res Commun 44:, 1285–1291. [CrossRef][PubMed]
    [Google Scholar]
  12. Chou P. Y., Fasman G. D.. ( 1974;). Conformational parameters for amino acids in helical, β-sheet, and random coil regions calculated from proteins. . Biochemistry 13:, 211–222. [CrossRef][PubMed]
    [Google Scholar]
  13. Click E. M., Webster R. E.. ( 1997;). Filamentous phage infection: required interactions with the TolA protein. . J Bacteriol 179:, 6464–6471.[PubMed]
    [Google Scholar]
  14. Click E. M., Webster R. E.. ( 1998;). The TolQRA proteins are required for membrane insertion of the major capsid protein of the filamentous phage f1 during infection. . J Bacteriol 180:, 1723–1728.[PubMed]
    [Google Scholar]
  15. Clifton L. A., Johnson C. L., Solovyova A. S., Callow P., Weiss K. L., Ridley H., Le Brun A. P., Kinane C. J., Webster J. R. P.. & other authors ( 2012;). Low resolution structure and dynamics of a colicin-receptor complex determined by neutron scattering. . J Biol Chem 287:, 337–346. [CrossRef][PubMed]
    [Google Scholar]
  16. Cole C., Barber J. D., Barton G. J.. ( 2008;). The Jpred 3 secondary structure prediction server. . Nucleic Acids Res 36: (Web Server), W197-201. [CrossRef][PubMed]
    [Google Scholar]
  17. Cornilescu G., Delaglio F., Bax A.. ( 1999;). Protein backbone angle restraints from searching a database for chemical shift and sequence homology. . J Biomol NMR 13:, 289–302. [CrossRef][PubMed]
    [Google Scholar]
  18. Davies J. K., Reeves P.. ( 1975;). Genetics of resistance to colicins in Escherichia coli K-12: cross-resistance among colicins of group A. . J Bacteriol 123:, 102–117.[PubMed]
    [Google Scholar]
  19. Deprez C., Lloubès R., Gavioli M., Marion D., Guerlesquin F., Blanchard L.. ( 2005;). Solution structure of the E.coli TolA C-terminal domain reveals conformational changes upon binding to the phage g3p N-terminal domain. . J Mol Biol 346:, 1047–1057. [CrossRef][PubMed]
    [Google Scholar]
  20. Derouiche R., Bénédetti H., Lazzaroni J. C., Lazdunski C., Lloubès R.. ( 1995;). Protein complex within Escherichia coli inner membrane. TolA N-terminal domain interacts with TolQ and TolR proteins. . J Biol Chem 270:, 11078–11084. [CrossRef][PubMed]
    [Google Scholar]
  21. Derouiche R., Lloubès R., Sasso S., Bouteille H., Oughideni R., Lazdunski C., Loret E.. ( 1999;). Circular dichroism and molecular modeling of the E. coli TolA periplasmic domains. . Biospectroscopy 5:, 189–198. [CrossRef][PubMed]
    [Google Scholar]
  22. Dubuisson J. F., Vianney A., Lazzaroni J. C.. ( 2002;). Mutational analysis of the TolA C-terminal domain of Escherichia coli and genetic evidence for an interaction between TolA and TolB. . J Bacteriol 184:, 4620–4625. [CrossRef][PubMed]
    [Google Scholar]
  23. Fognini-Lefebvre N., Lazzaroni J. C., Portalier R.. ( 1987;). tolA, tolB and excC, three cistrons involved in the control of pleiotropic release of periplasmic proteins by Escherichia coli K12. . Mol Gen Genet 209:, 391–395. [CrossRef][PubMed]
    [Google Scholar]
  24. Ford C. G., Kolappan S., Phan H. T. H., Waldor M. K., Winther-Larsen H. C., Craig L.. ( 2012;). Crystal structures of a CTXphi pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces. . J Biol Chem 287:, 36258–36272. [CrossRef][PubMed]
    [Google Scholar]
  25. Gerding M. A., Ogata Y., Pecora N. D., Niki H., de Boer P. A. J.. ( 2007;). The trans-envelope Tol-Pal complex is part of the cell division machinery and required for proper outer-membrane invagination during cell constriction in E. coli.. Mol Microbiol 63:, 1008–1025. [CrossRef][PubMed]
    [Google Scholar]
  26. Gokce I., Raggett E. M., Hong Q., Virden R., Cooper A., Lakey J. H.. ( 2000;). The TolA-recognition site of colicin N. ITC, SPR and stopped-flow fluorescence define a crucial 27-residue segment. . J Mol Biol 304:, 621–632. [CrossRef][PubMed]
    [Google Scholar]
  27. Grinter R., Josts I., Zeth K., Roszak A. W., McCaughey L. C., Cogdell R. J., Milner J. J., Kelly S. M., Byron O., Walker D.. ( 2014;). Structure of the atypical bacteriocin pectocin M2 implies a novel mechanism of protein uptake. . Mol Microbiol 93:, 234–246. [CrossRef][PubMed]
    [Google Scholar]
  28. Hecht O., Ridley H., Boetzel R., Lewin A., Cull N., Chalton D. A., Lakey J. H., Moore G. R.. ( 2008;). Self-recognition by an intrinsically disordered protein. . FEBS Lett 582:, 2673–2677. [CrossRef][PubMed]
    [Google Scholar]
  29. Hecht O., Ridley H., Lakey J. H., Moore G. R.. ( 2009;). A common interaction for the entry of colicin N and filamentous phage into Escherichia coli.. J Mol Biol 388:, 880–893. [CrossRef][PubMed]
    [Google Scholar]
  30. Hecht O., Zhang Y., Li C., Penfold C. N., James R., Moore G. R.. ( 2010;). Characterisation of the interaction of colicin A with its co-receptor TolA. . FEBS Lett 584:, 2249–2252. [CrossRef][PubMed]
    [Google Scholar]
  31. Holliger P., Riechmann L., Williams R. L.. ( 1999;). Crystal structure of the two N-terminal domains of g3p from filamentous phage fd at 1.9 A: evidence for conformational lability. . J Mol Biol 288:, 649–657. [CrossRef][PubMed]
    [Google Scholar]
  32. Housden N. G., Wojdyla J. A., Korczynska J., Grishkovskaya I., Kirkpatrick N., Brzozowski A. M., Kleanthous C.. ( 2010;). Directed epitope delivery across the Escherichia coli outer membrane through the porin OmpF. . Proc Natl Acad Sci U S A 107:, 21412–21417. [CrossRef][PubMed]
    [Google Scholar]
  33. Housden N. G., Hopper J. T. S., Lukoyanova N., Rodriguez-Larrea D., Wojdyla J. A., Klein A., Kaminska R., Bayley H., Saibil H. R.. & other authors ( 2013;). Intrinsically disordered protein threads through the bacterial outer-membrane porin OmpF. . Science 340:, 1570–1574. [CrossRef][PubMed]
    [Google Scholar]
  34. Jakes K. S.. ( 2014;). Daring to be different: colicin N finds another way. . Mol Microbiol 92:, 435–439. [CrossRef][PubMed]
    [Google Scholar]
  35. Johnson C. L., Ridley H., Pengelly R. J., Salleh M. Z., Lakey J. H.. ( 2013;). The unstructured domain of colicin N kills Escherichia coli.. Mol Microbiol 89:, 84–95. [CrossRef][PubMed]
    [Google Scholar]
  36. Johnson C. L., Ridley H., Marchetti R., Silipo A., Griffin D. C., Crawford L., Bonev B., Molinaro A., Lakey J. H.. ( 2014;). The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. . Mol Microbiol 92:, 440–452. [CrossRef][PubMed]
    [Google Scholar]
  37. Joseph P. R. B., Poluri K. M., Gangavarapu P., Rajagopalan L., Raghuwanshi S., Richardson R. M., Garofalo R. P., Rajarathnam K.. ( 2013;). Proline substitution of dimer interface β-strand residues as a strategy for the design of functional monomeric proteins. . Biophys J 105:, 1491–1501. [CrossRef][PubMed]
    [Google Scholar]
  38. Karlsson F., Borrebaeck C. A. K., Nilsson N., Malmborg-Hager A. C.. ( 2003;). The mechanism of bacterial infection by filamentous phages involves molecular interactions between TolA and phage protein 3 domains. . J Bacteriol 185:, 2628–2634. [CrossRef][PubMed]
    [Google Scholar]
  39. Karlsson F., Malmborg-Hager A. C., Borrebaeck C. A. K.. ( 2006;). Escherichia coli TolA tolerates multiple amino-acid substitutions as revealed by screening randomized variants for membrane integrity and phage receptor function. . FEMS Microbiol Lett 259:, 81–88. [CrossRef][PubMed]
    [Google Scholar]
  40. Kim Y. C., Tarr A. W., Penfold C. N.. ( 2014;). Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. . Biochim Biophys Acta 1843:, 1717–1731. [CrossRef][PubMed]
    [Google Scholar]
  41. Kleanthous C.. ( 2010;). Swimming against the tide: progress and challenges in our understanding of colicin translocation. . Nat Rev Microbiol 8:, 843–848. [CrossRef][PubMed]
    [Google Scholar]
  42. Lazzaroni J. C., Portalier R. C.. ( 1981;). Genetic and biochemical characterization of periplasmic-leaky mutants of Escherichia coli K-12. . J Bacteriol 145:, 1351–1358.[PubMed]
    [Google Scholar]
  43. Levengood S. K., Webster R. E.. ( 1989;). Nucleotide sequences of the tolA and tolB genes and localization of their products, components of a multistep translocation system in Escherichia coli.. J Bacteriol 171:, 6600–6609.[PubMed]
    [Google Scholar]
  44. Li C., Zhang Y., Vankemmelbeke M., Hecht O., Aleanizy F. S., Macdonald C., Moore G. R., James R., Penfold C. N.. ( 2012;). Structural evidence that colicin A protein binds to a novel binding site of TolA protein in Escherichia coli periplasm. . J Biol Chem 287:, 19048–19057. [CrossRef][PubMed]
    [Google Scholar]
  45. Lubkowski J., Hennecke F., Plückthun A., Wlodawer A.. ( 1999;). Filamentous phage infection: crystal structure of g3p in complex with its coreceptor, the C-terminal domain of TolA. . Structure 7:, 711–722. [CrossRef][PubMed]
    [Google Scholar]
  46. Martin A., Schmid F. X.. ( 2003;). Evolutionary stabilization of the gene-3-protein of phage fd reveals the principles that govern the thermodynamic stability of two-domain proteins. . J Mol Biol 328:, 863–875. [CrossRef][PubMed]
    [Google Scholar]
  47. Penfold C. N., Li C., Zhang Y., Vankemmelbeke M., James R.. ( 2012;). Colicin A binds to a novel binding site of TolA in the Escherichia coli periplasm. . Biochem Soc Trans 40:, 1469–1474. [CrossRef][PubMed]
    [Google Scholar]
  48. Pugsley A. P., Schnaitman C. A.. ( 1978;). Identification of three genes controlling production of new outer membrane pore proteins in Escherichia coli K-12. . J Bacteriol 135:, 1118–1129.[PubMed]
    [Google Scholar]
  49. Raggett E. M., Bainbridge G., Evans L. J. E., Cooper A., Lakey J. H.. ( 1998;). Discovery of critical Tol A-binding residues in the bactericidal toxin colicin N: a biophysical approach. . Mol Microbiol 28:, 1335–1343. [CrossRef][PubMed]
    [Google Scholar]
  50. Remaut H., Waksman G.. ( 2006;). Protein-protein interaction through β-strand addition. . Trends Biochem Sci 31:, 436–444. [CrossRef][PubMed]
    [Google Scholar]
  51. Riechmann L., Holliger P.. ( 1997;). The C-terminal domain of TolA is the coreceptor for filamentous phage infection of E. coli. . Cell 90:, 351–360. [CrossRef][PubMed]
    [Google Scholar]
  52. Romero P., Obradovic Z., Kissinger C., Villafranca J. E., Dunker A. K.. ( 1997;). Identifying disordered regions in proteins from amino acid sequence. . In Proceedings of the International Conference on Neural Networks, vol. 1, pp. 90–95. New York:: IEEE;.
  53. Roy A., Kucukural A., Zhang Y.. ( 2010;). I-TASSER: a unified platform for automated protein structure and function prediction. . Nat Protoc 5:, 725–738. [CrossRef][PubMed]
    [Google Scholar]
  54. Schendel S. L., Click E. M., Webster R. E., Cramer W. A.. ( 1997;). The TolA protein interacts with colicin E1 differently than with other group A colicins. . J Bacteriol 179:, 3683–3690.[PubMed]
    [Google Scholar]
  55. Sharma O., Datsenko K. A., Ess S. C., Zhalnina M. V., Wanner B. L., Cramer W. A.. ( 2009;). Genome-wide screens: novel mechanisms in colicin import and cytotoxicity. . Mol Microbiol 73:, 571–585. [CrossRef][PubMed]
    [Google Scholar]
  56. Torriani A.. ( 1966;). Alkaline phosphatase from Escherichia coli. . In Procedures in Nucleic Acid Research, pp. 224–235. Edited by Cantoni G. L., Davies D. R... New York:: Harper & Row;.
    [Google Scholar]
  57. Vetter I. R., Parker M. W., Tucker A. D., Lakey J. H., Pattus F., Tsernoglou D.. ( 1998;). Crystal structure of a colicin N fragment suggests a model for toxicity. . Structure 6:, 863–874. [CrossRef][PubMed]
    [Google Scholar]
  58. Walburger A., Lazdunski C., Corda Y.. ( 2002;). The Tol/Pal system function requires an interaction between the C-terminal domain of TolA and the N-terminal domain of TolB. . Mol Microbiol 44:, 695–708. [CrossRef][PubMed]
    [Google Scholar]
  59. Webster R. E.. ( 1991;). The tol gene products and the import of macromolecules into Escherichia coli.. Mol Microbiol 5:, 1005–1011. [CrossRef][PubMed]
    [Google Scholar]
  60. Weitzel A. C., Larsen R. A.. ( 2008;). Differential complementation of DeltatolA Escherichia coli by a Yersinia enterocolitica TolA homologue. . FEMS Microbiol Lett 282:, 81–88. [CrossRef][PubMed]
    [Google Scholar]
  61. Zhang Y.. ( 2008;). I-TASSER server for protein 3D structure prediction. . BMC Bioinformatics 9:, 40. [CrossRef][PubMed]
    [Google Scholar]
  62. Zhang Y., Li C., Vankemmelbeke M. N., Bardelang P., Paoli M., Penfold C. N., James R.. ( 2010;). The crystal structure of the TolB box of colicin A in complex with TolB reveals important differences in the recruitment of the common TolB translocation portal used by group A colicins. . Mol Microbiol 75:, 623–636. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000024
Loading
/content/journal/micro/10.1099/mic.0.000024
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error