is typically recognized as an extracellular pathogen. However, a number of studies revealed its ability to invade epithelial cells, indicating a more complex pathogen–host interaction. The molecular mechanisms controlling and facilitating internalization of are poorly understood. In this study, we investigated the role of DIP0733 as virulence factor to elucidate how it contributes to the process of pathogen–host cell interaction. Based on experiments, it was suggested recently that the DIP0733 protein might be involved in adhesion, invasion of epithelial cells and induction of apoptosis. A corresponding mutant strain generated in this study was attenuated in its ability to colonize and kill the host in a infection model system. Furthermore, the mutant showed an altered adhesion pattern and a drastically reduced ability to adhere and invade epithelial cells. Subsequent experiments showed an influence of DIP0733 on binding of to extracellular matrix proteins such as collagen and fibronectin. Furthermore, based on its fibrinogen-binding activity, DIP0733 may play a role in avoiding recognition of by the immune system. In summary, our findings support the idea that DIP0733 is a multi-functional virulence factor of .


Article metrics loading...

Loading full text...

Full text loading...



  1. Bernard K. (2012). The genus corynebacterium and other medically relevant coryneform-like bacteria. J Clin Microbiol 50, 31523158. [View Article][PubMed] [Google Scholar]
  2. Bertuccini L., Baldassarri L., von Hunolstein C. (2004). Internalization of non-toxigenic Corynebacterium diphtheriae by cultured human respiratory epithelial cells. Microb Pathog 37, 111118. [View Article][PubMed] [Google Scholar]
  3. Brenner S. (1974). The genetics of Caenorhabditis elegans . Genetics 77, 7194.[PubMed] [Google Scholar]
  4. Broadway M. M., Rogers E. A., Chang C., Huang I. H., Dwivedi P., Yildirim S., Schmitt M. P., Das A., Ton-That H. (2013). Pilus gene pool variation and the virulence of Corynebacterium diphtheriae clinical isolates during infection of a nematode. J Bacteriol 195, 37743783.[CrossRef] [Google Scholar]
  5. Burkovski A. (2013a). Diphtheria. In The Prokaryotes, 4th ed., vol. 5, pp. 237246. Edited by Rosenberg E., DeLong E. F., Thompson F., Lory S., Stackebrandt E. , New York: Springer. [View Article] [Google Scholar]
  6. Burkovski A. (2013b). Diphtheria and its etiological agents. In Corynebacterium diphtheriae and Related Toxigenic Species, pp. 114. Edited by Burkovski A. . Dordrecht: Springer. [Google Scholar]
  7. Chagnot C., Listrat A., Astruc T., Desvaux M. (2012). Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 14, 16871696. [View Article][PubMed] [Google Scholar]
  8. Collier R. J. (2001). Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon 39, 17931803. [View Article][PubMed] [Google Scholar]
  9. Colombo A. V., Hirata R. Jr, de Souza C. M., Monteiro-Leal L. H., Previato J. O., Formiga L. C., Andrade A. F., Mattos-Guaraldi A. L. (2001). Corynebacterium diphtheriae surface proteins as adhesins to human erythrocytes. FEMS Microbiol Lett 197, 235239. [View Article][PubMed] [Google Scholar]
  10. de Bono M., Bargmann C. I. (1998). Natural variation in a neuropeptide Y receptor homolog modifies social behavior and food response in C. elegans . Cell 94, 679689. [View Article][PubMed] [Google Scholar]
  11. dos Santos C. S., dos Santos L. S., de Souza M. C., dos Santos Dourado F., de Souza de Oliveira Dias A. A., Sabbadini P. S., Pereira G. A., Cabral M. C., Hirata Junior R., de Mattos-Guaraldi A. L. (2010). Non-opsonic phagocytosis of homologous non-toxigenic and toxigenic Corynebacterium diphtheriae strains by human U-937 macrophages. Microbiol Immunol 54, 110. [View Article][PubMed] [Google Scholar]
  12. Garsin D. A., Sifri C. D., Mylonakis E., Qin X., Singh K. V., Murray B. E., Calderwood S. B., Ausubel F. M. (2001). A simple model host for identifying Gram-positive virulence factors. Proc Natl Acad Sci U S A 98, 1089210897. [View Article][PubMed] [Google Scholar]
  13. Gey G. O., Coffmann W. D., Kubicek M. T. (1952). Tissue culture studies of the proliferative capacity of cervical carcinoma and normal epithelium. Cancer Res 12, 264265. [Google Scholar]
  14. Hadfield T. L., McEvoy P., Polotsky Y., Tzinserling V. A., Yakovlev A. A. (2000). The pathology of diphtheria. J Infect Dis 181 ( Suppl. 1 ), S116S120. [View Article][PubMed] [Google Scholar]
  15. Hauck C. R., Ohlsen K. (2006). Sticky connections: extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus . Curr Opin Microbiol 9, 511. [View Article][PubMed] [Google Scholar]
  16. Hirata R., Napoleão F., Monteiro-Leal L. H., Andrade A. F., Nagao P. E., Formiga L. C., Fonseca L. S., Mattos-Guaraldi A. L. (2002). Intracellular viability of toxigenic Corynebacterium diphtheriae strains in HEp-2 cells. FEMS Microbiol Lett 215, 115119. [View Article][PubMed] [Google Scholar]
  17. Hirata R. Jr, Souza S. M., Rocha-de-Souza C. M., Andrade A. F., Monteiro-Leal L. H., Formiga L. C., Mattos-Guaraldi A. L. (2004). Patterns of adherence to HEp-2 cells and actin polymerisation by toxigenic Corynebacterium diphtheriae strains. Microb Pathog 36, 125130. [View Article][PubMed] [Google Scholar]
  18. Jakoby M., Ngouoto-Nkili C.-E., Burkovski A. (1999). Construction and application of new Corynebacterium glutamicum vectors. Biotechnol Tech 13, 437441. [View Article] [Google Scholar]
  19. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors (2007). clustal w and clustal_x version 2.0. Bioinformatics 23, 29472948. [View Article][PubMed] [Google Scholar]
  20. Mattos-Guaraldi A. L. (2002). Patterns of adherence to HEp-2 cells and ability to induce actin polymerisation by toxigenic Corynebacterium diphtheriae strains. In Seventh International Meeting of the European Laboratory Working Group on Diphtheria, ELWGD . Abstract Book 1, pp. 7273. Vienna. [Google Scholar]
  21. Murphy J. R. (1996). Corynebacterium diphtheriae . In Medical Microbiology, 4th edn, pp. 99100. Edited by Baron S. . Galveston, TX: University of Texas Medical Branch at Galveston. [Google Scholar]
  22. Ott L., Burkovski A. (2013). Toxigenic corynebacteria: adhesion, invasion and host response. In Corynebacterium diphtheriae and Related Toxigenic Species, pp. 143170. Edited by Burkovski A. . Dordrecht: Springer. [View Article] [Google Scholar]
  23. Ott L., Höller M., Gerlach R. G., Hensel M., Rheinlaender J., Schäffer T. E., Burkovski A. (2010a). Corynebacterium diphtheriae invasion-associated protein (DIP1281) is involved in cell surface organization, adhesion and internalization in epithelial cells. BMC Microbiol 10, 2. [View Article][PubMed] [Google Scholar]
  24. Ott L., Höller M., Rheinlaender J., Schäffer T. E., Hensel M., Burkovski A. (2010b). Strain-specific differences in pili formation and the interaction of Corynebacterium diphtheriae with host cells. BMC Microbiol 10, 257. [View Article][PubMed] [Google Scholar]
  25. Ott L., McKenzie A., Baltazar M. T., Britting S., Bischof A., Burkovski A., Hoskisson P. A. (2012). Evaluation of invertebrate infection models for pathogenic corynebacteria. FEMS Immunol Med Microbiol 65, 413421. [View Article][PubMed] [Google Scholar]
  26. Ott L., Scholz B., Höller M., Hasselt K., Ensser A., Burkovski A. (2013). Induction of the NFκ-B signal transduction pathway in response to Corynebacterium diphtheriae infection. Microbiology 159, 126135. [View Article][PubMed] [Google Scholar]
  27. Puliti M., von Hunolstein C., Marangi M., Bistoni F., Tissi L. (2006). Experimental model of infection with non-toxigenic strains of Corynebacterium diphtheriae and development of septic arthritis. J Med Microbiol 55, 229235. [View Article][PubMed] [Google Scholar]
  28. Rogers E. A., Das A., Ton-That H. (2011). Adhesion by pathogenic corynebacteria. Adv Exp Med Biol 715, 91103. [View Article][PubMed] [Google Scholar]
  29. Readon-Robinson M. E., Ton-That H. (2013). Assembly and function of Corynebacterium diphtheriae pili. In Corynebacterium diphtheriae and Related Toxigenic Species, pp. 123141. Edited by Burkovski A. . Dordrecht: Springer. [Google Scholar]
  30. Sabbadini P. S., Genovez M. R., Silva C. F., Adelino T. L., Santos C. S., Pereira G. A., Nagao P. E., Dias A. A., Mattos-Guaraldi A. L., Hirata, Júnior R. (2010). Fibrinogen binds to nontoxigenic and toxigenic Corynebacterium diphtheriae strains. Mem Inst Oswaldo Cruz 105, 706711. [View Article][PubMed] [Google Scholar]
  31. Sabbadini P. S., Assis M. C., Trost E., Gomes D. L., Moreira L. O., Dos Santos C. S., Pereira G. A., Nagao P. E., Azevedo V. A. & other authors (2012). Corynebacterium diphtheriae 67-72p hemagglutinin, characterized as the protein DIP0733, contributes to invasion and induction of apoptosis in HEp-2 cells. Microb Pathog 52, 165176. [View Article][PubMed] [Google Scholar]
  32. Sambrook J., Fritsch E. F., Maniatis T. (1989).Molecular Cloning: a Laboratory Manual. 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory. [Google Scholar]
  33. Scherer W. F., Syverton J. T., Gey G. O. (1953). Studies on the propagation in vitro of poliomyelitis viruses. IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix. J Exp Med 97, 695710. [View Article][PubMed] [Google Scholar]
  34. Schwarz-Linek U., Höök M., Potts J. R. (2006). Fibronectin-binding proteins of Gram-positive cocci. Microbes Infect 8, 22912298. [View Article][PubMed] [Google Scholar]
  35. Simpson-Louredo L., Ramos J. N., Peixoto R. S., Santos L. S., Antunes C. A., Ladeira E. M., Santos C. S., Vieira V. V., Bôas M. H. & other authors (2014). Corynebacterium ulcerans isolates from humans and dogs: fibrinogen, fibronectin and collagen-binding, antimicrobial and PFGE profiles. Antonie van Leeuwenhoek 105, 343352. [View Article][PubMed] [Google Scholar]
  36. Sorensen K., Brodbeck U. (1986). Assessment of coating-efficiency in ELISA plates by direct protein determination. J Immunol Methods 95, 291293. [View Article][PubMed] [Google Scholar]
  37. Trost E., Blom J., de Castro Soares S., Huang I. H., Al-Dilaimi A., Schröder J., Jaenicke S., Dorella F. A., Rocha F. S. & other authors (2012). Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 194, 31993215. [View Article][PubMed] [Google Scholar]
  38. Tsuchiya S., Yamabe M., Yamaguchi Y., Kobayashi Y., Konno T., Tada K. (1980). Establishment and characterization of a human acute monocytic leukemia cell line (THP-1). Int J Cancer 26, 171176. [View Article][PubMed] [Google Scholar]
  39. Ventura M., Canchaya C., Tauch A., Chandra G., Fitzgerald G. F., Chater K. F., van Sinderen D. (2007). Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 71, 495548. [View Article][PubMed] [Google Scholar]
  40. Zhi X. Y., Li W. J., Stackebrandt E. (2009). An update of the structure and 16S rRNA gene sequence-based definition of higher ranks of the class Actinobacteria, with the proposal of two new suborders and four new families and emended descriptions of the existing higher taxa. Int J Syst Evol Microbiol 59, 589608. [View Article][PubMed] [Google Scholar]

Data & Media loading...


Supplementary Data


Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error