1887

Abstract

Recent work has shown that coagulation and innate immunity are tightly interwoven host responses that help eradicate an invading pathogen. Some bacterial species, including , secrete pro-coagulant factors that, in turn, can modulate these immune reactions. Such mechanisms may not only protect the micro-organism from a lethal attack, but also promote bacterial proliferation and the establishment of infection. Our data showed that coagulase-positive bacteria promoted clotting of plasma which was not seen when a coagulase-deficient mutant strain was used. Furthermore, studies showed that this ability constituted a mechanism that supported the aggregation, survival and persistence of the micro-organism within the fibrin network. These findings were also confirmed when agglutination and persistence of coagulase-positive bacteria at the local focus of infection were studied in a subcutaneous murine infection model. In contrast, the coagulase-deficient strain which was not able to induce clotting failed to aggregate and to persist . In conclusion, our data suggested that coagulase-positive have evolved mechanisms that prevent their elimination within a fibrin clot.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000019
2015-03-01
2019-11-21
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/621.html?itemId=/content/journal/micro/10.1099/mic.0.000019&mimeType=html&fmt=ahah

References

  1. Angus D. C., van der Poll T.. ( 2013;). Severe sepsis and septic shock. . N Engl J Med 369:, 840–851. [CrossRef][PubMed]
    [Google Scholar]
  2. Bancroft J. D., Gamble M.. ( 2002;). Theory and Practice of Histological Techniques. New York:: Churchill Livingstone;.
    [Google Scholar]
  3. Blevins S. M., Bronze M. S.. ( 2010;). Robert Koch and the ‘golden age’ of bacteriology. . Int J Infect Dis 14:, e744–e751. [CrossRef][PubMed]
    [Google Scholar]
  4. Bokarewa M. I., Jin T., Tarkowski A.. ( 2006;). Staphylococcus aureus: staphylokinase. . Int J Biochem Cell Biol 38:, 504–509. [CrossRef][PubMed]
    [Google Scholar]
  5. Cheng A. G., McAdow M., Kim H. K., Bae T., Missiakas D. M., Schneewind O.. ( 2010;). Contribution of coagulases towards Staphylococcus aureus disease and protective immunity. . PLoS Pathog 6:, e1001036. [CrossRef][PubMed]
    [Google Scholar]
  6. Cheung A. L., Chien Y. T., Bayer A. S.. ( 1999;). Hyperproduction of alpha-hemolysin in a sigB mutant is associated with elevated SarA expression in Staphylococcus aureus. . Infect Immun 67:, 1331–1337.[PubMed]
    [Google Scholar]
  7. Engelmann B., Massberg S.. ( 2013;). Thrombosis as an intravascular effector of innate immunity. . Nat Rev Immunol 13:, 34–45. [CrossRef][PubMed]
    [Google Scholar]
  8. Field H. I., Smith H. W.. ( 1945;). Coagulase test for staphylococci. . J Comp Pathol 55:, 63–69. [CrossRef]
    [Google Scholar]
  9. Friedrich R., Panizzi P., Fuentes-Prior P., Richter K., Verhamme I., Anderson P. J., Kawabata S., Huber R., Bode W., Bock P. E.. ( 2003;). Staphylocoagulase is a prototype for the mechanism of cofactor-induced zymogen activation. . Nature 425:, 535–539. [CrossRef][PubMed]
    [Google Scholar]
  10. Goerke C., Fluckiger U., Steinhuber A., Zimmerli W., Wolz C.. ( 2001;). Impact of the regulatory loci agr, sarA and sae of Staphylococcus aureus on the induction of α-toxin during device-related infection resolved by direct quantitative transcript analysis. . Mol Microbiol 40:, 1439–1447. [CrossRef][PubMed]
    [Google Scholar]
  11. Guggenberger C., Wolz C., Morrissey J. A., Heesemann J.. ( 2012;). Two distinct coagulase-dependent barriers protect Staphylococcus aureus from neutrophils in a three dimensional in vitro infection model. . PLoS Pathog 8:, e1002434. [CrossRef][PubMed]
    [Google Scholar]
  12. Haslinger-Löffler B., Kahl B. C., Grundmeier M., Strangfeld K., Wagner B., Fischer U., Cheung A. L., Peters G., Schulze-Osthoff K., Sinha B.. ( 2005;). Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. . Cell Microbiol 7:, 1087–1097. [CrossRef][PubMed]
    [Google Scholar]
  13. Horsburgh M. J., Aish J. L., White I. J., Shaw L., Lithgow J. K., Foster S. J.. ( 2002;). σB modulates virulence determinant expression and stress resistance: characterization of a functional rsbU strain derived from Staphylococcus aureus 8325-4. . J Bacteriol 184:, 5457–5467. [CrossRef][PubMed]
    [Google Scholar]
  14. Lebeau C., Vandenesch F., Greenland T., Novick R. P., Etienne J.. ( 1994;). Coagulase expression in Staphylococcus aureus is positively and negatively modulated by an agr-dependent mechanism. . J Bacteriol 176:, 5534–5536.[PubMed]
    [Google Scholar]
  15. Loof T. G., Mörgelin M., Johansson L., Oehmcke S., Olin A. I., Dickneite G., Norrby-Teglund A., Theopold U., Herwald H.. ( 2011;). Coagulation, an ancestral serine protease cascade, exerts a novel function in early immune defense. . Blood 118:, 2589–2598. [CrossRef][PubMed]
    [Google Scholar]
  16. Mattsson E., Herwald H., Cramer H., Persson K., Sjöbring U., Björck L.. ( 2001;). Staphylococcus aureus induces release of bradykinin in human plasma. . Infect Immun 69:, 3877–3882. [CrossRef][PubMed]
    [Google Scholar]
  17. McAdow M., Missiakas D. M., Schneewind O.. ( 2012;). Staphylococcus aureus secretes coagulase and von Willebrand factor binding protein to modify the coagulation cascade and establish host infections. . J Innate Immun 4:, 141–148. [CrossRef][PubMed]
    [Google Scholar]
  18. McDevitt D., Vaudaux P., Foster T. J.. ( 1992;). Genetic evidence that bound coagulase of Staphylococcus aureus is not clumping factor. . Infect Immun 60:, 1514–1523.[PubMed]
    [Google Scholar]
  19. Much H.. ( 1908;). Über eine Vorstufe des Fibrinfermentes in Kulturen von Staphylokokkus aureus. . Biochem Z 14:, 143 (in German).
    [Google Scholar]
  20. Nippe N., Varga G., Holzinger D., Löffler B., Medina E., Becker K., Roth J., Ehrchen J. M., Sunderkötter C.. ( 2011;). Subcutaneous infection with S. aureus in mice reveals association of resistance with influx of neutrophils and Th2 response. . J Invest Dermatol 131:, 125–132. [CrossRef][PubMed]
    [Google Scholar]
  21. Nordin S. L., Andersson C., Bjermer L., Bjartell A., Mörgelin M., Egesten A.. ( 2013;). Midkine is part of the antibacterial activity released at the surface of differentiated bronchial epithelial cells. . J Innate Immun 5:, 519–530. [CrossRef][PubMed]
    [Google Scholar]
  22. Novick R. P.. ( 1967;). Properties of a cryptic high-frequency transducing phage in Staphylococcus aureus. . Virology 33:, 155–166. [CrossRef][PubMed]
    [Google Scholar]
  23. Peng H. L., Novick R. P., Kreiswirth B., Kornblum J., Schlievert P.. ( 1988;). Cloning, characterization, and sequencing of an accessory gene regulator (agr) in Staphylococcus aureus. . J Bacteriol 170:, 4365–4372.[PubMed]
    [Google Scholar]
  24. Phonimdaeng P., O’Reilly M., Nowlan P., Bramley A. J., Foster T. J.. ( 1990;). The coagulase of Staphylococcus aureus 8325-4. Sequence analysis and virulence of site-specific coagulase-deficient mutants. . Mol Microbiol 4:, 393–404. [CrossRef][PubMed]
    [Google Scholar]
  25. Vanassche T., Verhaegen J., Peetermans W. E., Van Ryn J., Cheng A., Schneewind O., Hoylaerts M. F., Verhamme P.. ( 2011;). Inhibition of staphylothrombin by dabigatran reduces Staphylococcus aureus virulence. . J Thromb Haemost 9:, 2436–2446. [CrossRef][PubMed]
    [Google Scholar]
  26. Wang X., Lin X., Loy J. A., Tang J., Zhang X. C.. ( 1998;). Crystal structure of the catalytic domain of human plasmin complexed with streptokinase. . Science 281:, 1662–1665. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000019
Loading
/content/journal/micro/10.1099/mic.0.000019
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error