1887

Abstract

This study monitored the dynamics and diversity of the human faecal ‘ cluster’ over a 3-month period using a polyphasic approach. Fresh faecal samples were collected fortnightly from 13 healthy donors (six males and seven females) aged between 26 and 61 years. FISH was used to enumerate total (EUB338mix) and ‘ cluster’ (ATO291) bacteria, with counts ranging between 1.12×10 and 9.95×10, and 1.03×10 and 1.16×10 cells (g dry weight faeces), respectively. The ‘ cluster’ population represented 0.2–22 % of the total bacteria, with proportions donor-dependent. Denaturing gradient gel electrophoresis (DGGE) using ‘ cluster’-specific primers demonstrated faecal populations of these bacteria were relatively stable, with bands identified as , /, , sp. PEAV3-3, , , , and in the DGGE profiles of individuals. Colony PCR was used to identify ‘ cluster’ bacteria isolated from faeces ( = 224 isolates). 16S rRNA gene sequence analysis of isolates demonstrated represented the predominant (88 % of isolates) member of the ‘ cluster’ found in human faeces, being found in nine individuals. was identified in three individuals (3.6 % of isolates). Isolates of , an ‘’ sp. and representatives of novel species belonging to the ‘ cluster’ were also identified in the study. Phenotypic characterization of the isolates demonstrated their highly saccharolytic nature and heterogeneous phenotypic profiles, and 97 % of the isolates displayed lipase activity.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000016
2015-03-01
2019-11-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/565.html?itemId=/content/journal/micro/10.1099/mic.0.000016&mimeType=html&fmt=ahah

References

  1. Arumugam M. , Raes J. , Pelletier E. , Le Paslier D. , Yamada T. , Mende D. R. , Fernandes G. R. , Tap J. , Bruls T. . & other authors ( 2011; ). Enterotypes of the human gut microbiome. . Nature 473:, 174–180. [CrossRef] [PubMed]
    [Google Scholar]
  2. Child M. W. , Kennedy A. , Walker A. W. , Bahrami B. , Macfarlane S. , Macfarlane G. T. . ( 2006; ). Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. . FEMS Microbiol Ecol 55:, 299–310. [CrossRef] [PubMed]
    [Google Scholar]
  3. Claus S. P. , Ellero S. L. , Berger B. , Krause L. , Bruttin A. , Molina J. , Paris A. , Want E. J. , de Waziers I. . & other authors ( 2011; ). Colonization-induced host-gut microbial metabolic interaction. . MBio 2:, e00271-10. [CrossRef] [PubMed]
    [Google Scholar]
  4. Daims H. , Brühl A. , Amann R. , Schleifer K. H. , Wagner M. . ( 1999; ). The domain-specific probe EUB338 is insufficient for the detection of all Bacteria: development and evaluation of a more comprehensive probe set. . Syst Appl Microbiol 22:, 434–444. [CrossRef] [PubMed]
    [Google Scholar]
  5. Eggerth A. H. . ( 1935; ). The gram-positive non-spore-bearing anaerobic bacilli of human feces. . J Bacteriol 30:, 277–299.[PubMed]
    [Google Scholar]
  6. Gupta R. S. , Chen W. J. , Adeolu M. , Chai Y. . ( 2013; ). Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. . Int J Syst Evol Microbiol 63:, 3379–3397. [CrossRef] [PubMed]
    [Google Scholar]
  7. Haiser H. J. , Gootenberg D. B. , Chatman K. , Sirasani G. , Balskus E. P. , Turnbaugh P. J. . ( 2013; ). Predicting and manipulating cardiac drug inactivation by the human gut bacterium Eggerthella lenta. . Science 341:, 295–298. [CrossRef] [PubMed]
    [Google Scholar]
  8. Harmsen H. J. M. , Wildeboer-Veloo A. C. M. , Grijpstra J. , Knol J. , Degener J. E. , Welling G. W. . ( 2000; ). Development of 16S rRNA-based probes for the Coriobacterium group and the Atopobium cluster and their application for enumeration of Coriobacteriaceae in human feces from volunteers of different age groups. . Appl Environ Microbiol 66:, 4523–4527. [CrossRef] [PubMed]
    [Google Scholar]
  9. Harmsen H. J. , Raangs G. C. , He T. , Degener J. E. , Welling G. W. . ( 2002; ). Extensive set of 16S rRNA-based probes for detection of bacteria in human feces. . Appl Environ Microbiol 68:, 2982–2990. [CrossRef] [PubMed]
    [Google Scholar]
  10. Holdeman L. V. , Good I. J. , Moore W. E. . ( 1976; ). Human fecal flora: variation in bacterial composition within individuals and a possible effect of emotional stress. . Appl Environ Microbiol 31:, 359–375.[PubMed]
    [Google Scholar]
  11. Hoyles, L. (2009). In vitro examination of the effect of orlistat on the ability of the faecal microbiota to utilize dietary lipids. PhD thesis, University of Reading, UK.
  12. Hoyles L. , McCartney A. L. . ( 2009; ). What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota?. FEMS Microbiol Lett 299:, 175–183. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hoyles L. , Collins M. D. , Falsen E. , Nikolaitchouk N. , McCartney A. L. . ( 2004; ). Transfer of members of the genus Falcivibrio to the genus Mobiluncus, and emended description of the genus Mobiluncus. . Syst Appl Microbiol 27:, 72–83. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hoyles L. , Clear J. A. , McCartney A. L. . ( 2013; ). Use of denaturing gradient gel electrophoresis to detect Actinobacteria associated with the human faecal microbiota. . Anaerobe 22:, 90–96. [CrossRef] [PubMed]
    [Google Scholar]
  15. Huber T. , Faulkner G. , Hugenholtz P. . ( 2004; ). Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. . Bioinformatics 20:, 2317–2319. [CrossRef] [PubMed]
    [Google Scholar]
  16. Jin J. S. , Kitahara M. , Sakamoto M. , Hattori M. , Benno Y. . ( 2010; ). Slackia equolifaciens sp. nov., a human intestinal bacterium capable of producing equol. . Int J Syst Evol Microbiol 60:, 1721–1724. [CrossRef] [PubMed]
    [Google Scholar]
  17. Kageyama A. , Benno Y. . ( 2000; ). Emendation of genus Collinsella and proposal of Collinsella stercoris sp. nov. and Collinsella intestinalis sp. nov. . Int J Syst Evol Microbiol 50:, 1767–1774.[PubMed] [CrossRef]
    [Google Scholar]
  18. Kageyama A. , Benno Y. , Nakase T. . ( 1999a; ). Phylogenetic and phenotypic evidence for the transfer of Eubacterium aerofaciens to the genus Collinsella as Collinsella aerofaciens gen. nov., comb. nov. . Int J Syst Bacteriol 49:, 557–565. [CrossRef] [PubMed]
    [Google Scholar]
  19. Kageyama A. , Benno Y. , Nakase T. . ( 1999b; ). Phylogenetic evidence for the transfer of Eubacterium lentum to the genus Eggerthella as Eggerthella lenta gen. nov., comb. nov. . Int J Syst Bacteriol 49:, 1725–1732. [CrossRef] [PubMed]
    [Google Scholar]
  20. Kim O. S. , Cho Y. J. , Lee K. , Yoon S. H. , Kim M. , Na H. , Park S. C. , Jeon Y. S. , Lee J. H. . & other authors ( 2012; ). Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. . Int J Syst Evol Microbiol 62:, 716–721. [CrossRef] [PubMed]
    [Google Scholar]
  21. Koenig J. E. , Spor A. , Scalfone N. , Fricker A. D. , Stombaugh J. , Knight R. , Angenent L. T. , Ley R. E. . ( 2011; ). Succession of microbial consortia in the developing infant gut microbiome. . Proc Natl Acad Sci U S A 108: (Suppl 1), 4578–4585. [CrossRef] [PubMed]
    [Google Scholar]
  22. Lahti L. , Salonen A. , Kekkonen R. A. , Salojärvi J. , Jalanka-Tuovinen J. , Palva A. , Orešič M. , de Vos W. M. . ( 2013; ). Associations between the human intestinal microbiota, Lactobacillus rhamnosus GG and serum lipids indicated by integrated analysis of high-throughput profiling data. . PeerJ 1:, e32. [CrossRef] [PubMed]
    [Google Scholar]
  23. Lau S. K. , Woo P. C. , Woo G. K. , Fung A. M. , Wong M. K. , Chan K. M. , Tam D. M. , Yuen K. Y. . ( 2004a; ). Eggerthella hongkongensis sp. nov. and eggerthella sinensis sp. nov., two novel Eggerthella species, account for half of the cases of Eggerthella bacteremia. . Diagn Microbiol Infect Dis 49:, 255–263. [CrossRef] [PubMed]
    [Google Scholar]
  24. Lau S. K. , Woo P. C. , Fung A. M. , Chan K. M. , Woo G. K. , Yuen K. Y. . ( 2004b; ). Anaerobic, non-sporulating, Gram-positive bacilli bacteraemia characterized by 16S rRNA gene sequencing. . J Med Microbiol 53:, 1247–1253. [CrossRef] [PubMed]
    [Google Scholar]
  25. Lay C. , Rigottier-Gois L. , Holmstrøm K. , Rajilic M. , Vaughan E. E. , de Vos W. M. , Collins M. D. , Thiel R. , Namsolleck P. . & other authors ( 2005; ). Colonic microbiota signatures across five northern European countries. . Appl Environ Microbiol 71:, 4153–4155. [CrossRef] [PubMed]
    [Google Scholar]
  26. Martín-Peláez S. , Gibson G. R. , Martín-Orúe S. M. , Klinder A. , Rastall R. A. , La Ragione R. M. , Woodward M. J. , Costabile A. . ( 2008; ). In vitro fermentation of carbohydrates by porcine faecal inocula and their influence on Salmonella Typhimurium growth in batch culture systems. . FEMS Microbiol Ecol 66:, 608–619. [CrossRef] [PubMed]
    [Google Scholar]
  27. Martínez I. , Wallace G. , Zhang C. , Legge R. , Benson A. K. , Carr T. P. , Moriyama E. N. , Walter J. . ( 2009; ). Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. . Appl Environ Microbiol 75:, 4175–4184. [CrossRef] [PubMed]
    [Google Scholar]
  28. Martínez I. , Lattimer J. M. , Hubach K. L. , Case J. A. , Yang J. , Weber C. G. , Louk J. A. , Rose D. J. , Kyureghian G. . & other authors ( 2013; ). Gut microbiome composition is linked to whole grain-induced immunological improvements. . ISME J 7:, 269–280. [CrossRef] [PubMed]
    [Google Scholar]
  29. Maruo T. , Sakamoto M. , Ito C. , Toda T. , Benno Y. . ( 2008; ). Adlercreutzia equolifaciens gen. nov., sp. nov., an equol-producing bacterium isolated from human faeces, and emended description of the genus Eggerthella. . Int J Syst Evol Microbiol 58:, 1221–1227. [CrossRef] [PubMed]
    [Google Scholar]
  30. Matsuki T. , Watanabe K. , Fujimoto J. , Takada T. , Tanaka R. . ( 2004; ). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. . Appl Environ Microbiol 70:, 7220–7228. [CrossRef] [PubMed]
    [Google Scholar]
  31. Maukonen J. , Simões C. , Saarela M. . ( 2012; ). The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. . FEMS Microbiol Ecol 79:, 697–708. [CrossRef] [PubMed]
    [Google Scholar]
  32. Mishra A. K. , Hugon P. , Lagier J.-C. , Nguyen T.-T. , Couderc C. , Raoult D. , Fournier P.-E. . ( 2013; ). Non contiguous-finished genome sequence and description of Enorma massiliensis gen. nov., sp. nov., a new member of the Family Coriobacteriaceae. . Stand Genomic Sci 8:, 290–305. [CrossRef] [PubMed]
    [Google Scholar]
  33. Moore W. E. , Holdeman L. V. . ( 1974; ). Human fecal flora: the normal flora of 20 Japanese-Hawaiians. . Appl Microbiol 27:, 961–979.[PubMed]
    [Google Scholar]
  34. Moore W. E. C. , Cato E. P. , Holdeman L. V. . ( 1971; ). Eubacterium lentum (Eggerth) Prévot 1938: emendation of description and designation of neotype strain. . Int J Syst Bacteriol 21:, 299–303. [CrossRef]
    [Google Scholar]
  35. Munson M. A. , Banerjee A. , Watson T. F. , Wade W. G. . ( 2004; ). Molecular analysis of the microflora associated with dental caries. . J Clin Microbiol 42:, 3023–3029. [CrossRef] [PubMed]
    [Google Scholar]
  36. Nagai F. , Watanabe Y. , Morotomi M. . ( 2010; ). Slackia piriformis sp. nov. and Collinsella tanakaei sp. nov., new members of the family Coriobacteriaceae, isolated from human faeces. . Int J Syst Evol Microbiol 60:, 2639–2646. [CrossRef] [PubMed]
    [Google Scholar]
  37. Qin J. , Li R. , Raes J. , Arumugam M. , Burgdorf K. S. , Manichanh C. , Nielsen T. , Pons N. , Levenez F. . & other authors ( 2010; ). A human gut microbial gene catalogue established by metagenomic sequencing. . Nature 464:, 59–65. [CrossRef] [PubMed]
    [Google Scholar]
  38. Rajilić-Stojanović M. , Smidt H. , de Vos W. M. . ( 2007; ). Diversity of the human gastrointestinal tract microbiota revisited. . Environ Microbiol 9:, 2125–2136. [CrossRef] [PubMed]
    [Google Scholar]
  39. Rajilić-Stojanović M. , Heilig H. G. , Molenaar D. , Kajander K. , Surakka A. , Smidt H. , de Vos W. M. . ( 2009; ). Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. . Environ Microbiol 11:, 1736–1751. [CrossRef] [PubMed]
    [Google Scholar]
  40. Rigottier-Gois L. , Bourhis A. G. , Gramet G. , Rochet V. , Doré J. . ( 2003; ). Fluorescent hybridisation combined with flow cytometry and hybridisation of total RNA to analyse the composition of microbial communities in human faeces using 16S rRNA probes. . FEMS Microbiol Ecol 43:, 237–245. [CrossRef] [PubMed]
    [Google Scholar]
  41. Sanguinetti C. J. , Dias Neto E. , Simpson A. J. . ( 1994; ). Rapid silver staining and recovery of PCR products separated on polyacrylamide gels. . Biotechniques 17:, 914–921.[PubMed]
    [Google Scholar]
  42. Sim K. , Cox M. J. , Wopereis H. , Martin R. , Knol J. , Li M. S. , Cookson W. O. , Moffatt M. F. , Kroll J. S. . ( 2012; ). Improved detection of bifidobacteria with optimised 16S rRNA-gene based pyrosequencing. . PLoS ONE 7:, e32543. [CrossRef] [PubMed]
    [Google Scholar]
  43. Stackebrandt E. , Ebers J. . ( 2006; ). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  44. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  45. Suau A. , Bonnet R. , Sutren M. , Godon J. J. , Gibson G. R. , Collins M. D. , Doré J. . ( 1999; ). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. . Appl Environ Microbiol 65:, 4799–4807.[PubMed]
    [Google Scholar]
  46. Turnbaugh P. J. , Hamady M. , Yatsunenko T. , Cantarel B. L. , Duncan A. , Ley R. E. , Sogin M. L. , Jones W. J. , Roe B. A. . & other authors ( 2009; ). A core gut microbiome in obese and lean twins. . Nature 457:, 480–484. [CrossRef] [PubMed]
    [Google Scholar]
  47. Vrieze A. , Holleman F. , Zoetendal E. G. , de Vos W. M. , Hoekstra J. B. , Nieuwdorp M. . ( 2010; ). The environment within: how gut microbiota may influence metabolism and body composition. . Diabetologia 53:, 606–613. [CrossRef] [PubMed]
    [Google Scholar]
  48. Wade W. G. , Downes J. , Dymock D. , Hiom S. J. , Weightman A. J. , Dewhirst F. E. , Paster B. J. , Tzellas N. , Coleman B. . ( 1999; ). The family Coriobacteriaceae: reclassification of Eubacterium exiguum (Poco et al. 1996) and Peptostreptococcus heliotrinreducens (Lanigan 1976) as Slackia exigua gen. nov., comb. nov. and Slackia heliotrinireducens gen. nov., comb. nov., and Eubacterium lentum (Prevot 1938) as Eggerthella lenta gen. nov., comb. nov. . Int J Syst Bacteriol 49:, 595–600. [CrossRef] [PubMed]
    [Google Scholar]
  49. Wang R. F. , Beggs M. L. , Erickson B. D. , Cerniglia C. E. . ( 2004; ). DNA microarray analysis of predominant human intestinal bacteria in fecal samples. . Mol Cell Probes 18:, 223–234. [CrossRef] [PubMed]
    [Google Scholar]
  50. Wilson K. H. , Blitchington R. B. . ( 1996; ). Human colonic biota studied by ribosomal DNA sequence analysis. . Appl Environ Microbiol 62:, 2273–2278.[PubMed]
    [Google Scholar]
  51. Woo P. C. , Teng J. L. , Lam K. K. , Tse C. W. , Leung K. W. , Leung A. W. , Lau S. K. , Yuen K. Y. . ( 2010; ). First report of Gordonibacter pamelaeae bacteremia. . J Clin Microbiol 48:, 319–322. [CrossRef] [PubMed]
    [Google Scholar]
  52. Würdemann D. , Tindall B. J. , Pukall R. , Lünsdorf H. , Strömpl C. , Namuth T. , Nahrstedt H. , Wos-Oxley M. , Ott S. . & other authors ( 2009; ). Gordonibacter pamelaeae gen. nov., sp. nov., a new member of the Coriobacteriaceae isolated from a patient with Crohn’s disease, and reclassification of Eggerthella hongkongensis Lau et al. 2006 as Paraeggerthella hongkongensis gen. nov., comb. nov. . Int J Syst Evol Microbiol 59:, 1405–1415. [CrossRef] [PubMed]
    [Google Scholar]
  53. Zhang H. , DiBaise J. K. , Zuccolo A. , Kudrna D. , Braidotti M. , Yu Y. , Parameswaran P. , Crowell M. D. , Wing R. . & other authors ( 2009; ). Human gut microbiota in obesity and after gastric bypass. . Proc Natl Acad Sci U S A 106:, 2365–2370. [CrossRef] [PubMed]
    [Google Scholar]
  54. Zoetendal E. G. , Rajilic-Stojanovic M. , de Vos W. M. . ( 2008; ). High-throughput diversity and functionality analysis of the gastrointestinal tract microbiota. . Gut 57:, 1605–1615. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000016
Loading
/content/journal/micro/10.1099/mic.0.000016
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error