1887

Abstract

Microbes commonly adhere to surfaces, aggregate in self-produced extracellular polymeric substances (EPS) and live in biofilms. Periodontitis is a serious oral infection that is initiated by the formation of biofilms by . EPS act as a barrier that protects biofilm-forming cells against sources of stress, including those induced by host immune cells and antimicrobial agents. Therefore, drugs intended to kill such micro-organisms cannot be used for the treatment of biofilm infections. Our previous studies revealed that subminimal inhibitory concentrations (subMIC) of two macrolide antibiotics (azithromycin, AZM and erythromycin, ERY) reduced biofilms. Furthermore, we demonstrated that the orthologue (PGN_0088) inhibits the synthesis of carbohydrates that are components of EPS in biofilms. Here, we constructed a novel mutant from ATCC 33277 and reveal that the increased abundance of carbohydrate in EPS of the mutant led to a reduced infiltration rate of AZM and ERY through EPS, and consequently elevated biofilm resistance to these macrolides. Detailed elucidation of the interaction between the product of the gene and EPS will assist in the development of novel approaches that target EPS to prevent and inhibit the formation of biofilms.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000013
2015-02-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/422.html?itemId=/content/journal/micro/10.1099/mic.0.000013&mimeType=html&fmt=ahah

References

  1. Anderl J. N., Franklin M. J., Stewart P. S.. 2000; Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother44:1818–1824 [CrossRef][PubMed]
    [Google Scholar]
  2. Brown M. R., Allison D. G., Gilbert P.. 1988; Resistance of bacterial biofilms to antibiotics: a growth-rate related effect?. J Antimicrob Chemother22:777–780 [CrossRef][PubMed]
    [Google Scholar]
  3. Characklis W. G.. 1990; Microbial biofouling control. In Biofilms pp.585–633 Edited by Characklis W. G., Marshall K. C.. New York: Wiley;
    [Google Scholar]
  4. Close T. J., Rodriguez R. L.. 1982; Construction and characterization of the chloramphenicol-resistance gene cartridge: A new approach to the transcriptional mapping of extrachromosomal elements. Gene20:305–316[CrossRef]
    [Google Scholar]
  5. Chu F., Kearns D. B., Branda S. S., Kolter R., Losick R.. 2006; Targets of the master regulator of biofilm formation in Bacillus subtilis. . Mol Microbiol59:1216–1228 [CrossRef][PubMed]
    [Google Scholar]
  6. Chu F., Kearns D. B., McLoon A., Chai Y., Kolter R., Losick R.. 2008; A novel regulatory protein governing biofilm formation in Bacillus subtilis. . Mol Microbiol68:1117–1127 [CrossRef][PubMed]
    [Google Scholar]
  7. Costerton J. W., Irvin R. T., Cheng K. J.. 1981; The bacterial glycocalyx in nature and disease. Annu Rev Microbiol35:299–324 [CrossRef][PubMed]
    [Google Scholar]
  8. Costerton J. W., Cheng K. J., Geesey G. G., Ladd T. I., Nickel J. C., Dasgupta M., Marrie T. J.. 1987; Bacterial biofilms in nature and disease. Annu Rev Microbiol41:435–464 [CrossRef][PubMed]
    [Google Scholar]
  9. Costerton J. W., Lewandowski Z., Caldwell D. E., Korber D. R., Lappin-Scott H. M.. 1995; Microbial biofilms. Annu Rev Microbiol49:711–745 [CrossRef][PubMed]
    [Google Scholar]
  10. Costerton J. W., Stewart P. S., Greenberg E. P.. 1999; Bacterial biofilms: a common cause of persistent infections. Science284:1318–1322 [CrossRef][PubMed]
    [Google Scholar]
  11. Donlan R. M., Costerton J. W.. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev15:167–193 [CrossRef][PubMed]
    [Google Scholar]
  12. Flemming H. C., Wingender J.. 2010; The biofilm matrix. Nat Rev Microbiol8:623–633[PubMed]
    [Google Scholar]
  13. Ichimiya T., Takeoka K., Hiramatsu K., Hirai K., Yamasaki T., Nasu M.. 1996; The influence of azithromycin on the biofilm formation of Pseudomonas aeruginosa in vitro. Chemotherapy42:186–191 [CrossRef][PubMed]
    [Google Scholar]
  14. Li Y. H., Tang N., Aspiras M. B., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G.. 2002; A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J Bacteriol184:2699–2708 [CrossRef][PubMed]
    [Google Scholar]
  15. Lopez D., Vlamakis H., Kolter R.. 2009; Generation of multiple cell types in Bacillus subtilis. . FEMS Microbiol Rev33:152–163 [CrossRef][PubMed]
    [Google Scholar]
  16. Lynch S. V., Dixon L., Benoit M. R., Brodie E. L., Keyhan M., Hu P., Ackerley D. F., Andersen G. L., Matin A.. 2007; Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother51:3650–3658 [CrossRef][PubMed]
    [Google Scholar]
  17. Maezono H., Noiri Y., Asahi Y., Yamaguchi M., Yamamoto R., Izutani N., Azakami H., Ebisu S.. 2011; Antibiofilm effects of azithromycin and erythromycin on Porphyromonas gingivalis. . Antimicrob Agents Chemother55:5887–5892 [CrossRef][PubMed]
    [Google Scholar]
  18. Mah T. F., O’Toole G. A.. 2001; Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol9:34–39 [CrossRef][PubMed]
    [Google Scholar]
  19. Nagano K., Murakami Y., Nishikawa K., Sakakibara J., Shimozato K., Yoshimura F.. 2007; Characterization of RagA and RagB in Porphyromonas gingivalis: study using gene-deletion mutants. J Med Microbiol56:1536–1548 [CrossRef][PubMed]
    [Google Scholar]
  20. Noguchi N., Noiri Y., Narimatsu M., Ebisu S.. 2005; Identification and localization of extraradicular biofilm-forming bacteria associated with refractory endodontic pathogens. Appl Environ Microbiol71:8738–8743 [CrossRef][PubMed]
    [Google Scholar]
  21. Noiri Y., Ozaki K., Nakae H., Matsuo T., Ebisu S.. 1997; An immunohistochemical study on the localization of Porphyromonas gingivalis, Campylobacter rectus and Actinomyces viscosus in human periodontal pockets. J Periodontal Res32:598–607 [CrossRef][PubMed]
    [Google Scholar]
  22. Noiri Y., Ehara A., Kawahara T., Takemura N., Ebisu S.. 2002; Participation of bacterial biofilms in refractory and chronic periapical periodontitis. J Endod28:679–683 [CrossRef][PubMed]
    [Google Scholar]
  23. Noiri Y., Okami Y., Narimatsu M., Takahashi Y., Kawahara T., Ebisu S.. 2003; Effects of chlorhexidine, minocycline, and metronidazole on Porphyromonas gingivalis strain 381 in biofilms. J Periodontol74:1647–1651 [CrossRef][PubMed]
    [Google Scholar]
  24. Noiri Y., Li L., Yoshimura F., Ebisu S.. 2004; Localization of Porphyromonas gingivalis-carrying fimbriae in situ in human periodontal pockets. J Dent Res83:941–945 [CrossRef][PubMed]
    [Google Scholar]
  25. O’Toole G., Kaplan H. B., Kolter R.. 2000; Biofilm formation as microbial development. Annu Rev Microbiol54:49–79 [CrossRef][PubMed]
    [Google Scholar]
  26. Samaranayake Y. H., Ye J., Yau J. Y., Cheung B. P., Samaranayake L. P.. 2005; In vitro method to study antifungal perfusion in Candida biofilms. J Clin Microbiol43:818–825 [CrossRef][PubMed]
    [Google Scholar]
  27. Simon R., Priefer U., Pühler A.. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in gram negative bacteria. Nat Biotechnol1:784–791 [CrossRef]
    [Google Scholar]
  28. Starner T. D., Shrout J. D., Parsek M. R., Appelbaum P. C., Kim G.. 2008; Subinhibitory concentrations of azithromycin decrease nontypeable Haemophilus influenzae biofilm formation and Diminish established biofilms. Antimicrob Agents Chemother52:137–145 [CrossRef][PubMed]
    [Google Scholar]
  29. Stewart P. S., Costerton J. W.. 2001; Antibiotic resistance of bacteria in biofilms. Lancet358:135–138 [CrossRef][PubMed]
    [Google Scholar]
  30. Winkelman J. T., Blair K. M., Kearns D. B.. 2009; RemA (YlzA) and RemB (YaaB) regulate extracellular matrix operon expression and biofilm formation in Bacillus subtilis. . J Bacteriol191:3981–3991 [CrossRef][PubMed]
    [Google Scholar]
  31. Yamaguchi M., Sato K., Yukitake H., Noiri Y., Ebisu S., Nakayama K.. 2010; A Porphyromonas gingivalis mutant defective in a putative glycosyltransferase exhibits defective biosynthesis of the polysaccharide portions of lipopolysaccharide, decreased gingipain activities, strong autoaggregation, and increased biofilm formation. Infect Immun78:3801–3812 [CrossRef][PubMed]
    [Google Scholar]
  32. Yamaguchi M., Noiri Y., Kuboniwa M., Yamamoto R., Asahi Y., Maezono H., Hayashi M., Ebisu S.. 2013; Porphyromonas gingivalis biofilms persist after chlorhexidine treatment. Eur J Oral Sci121:162–168 [CrossRef][PubMed]
    [Google Scholar]
  33. Yamamoto R., Noiri Y., Yamaguchi M., Asahi Y., Maezono H., Ebisu S.. 2011; Time course of gene expression during Porphyromonas gingivalis strain ATCC 33277 biofilm formation. Appl Environ Microbiol77:6733–6736 [CrossRef][PubMed]
    [Google Scholar]
  34. Yamamoto R., Noiri Y., Yamaguchi M., Asahi Y., Maezono H., Kuboniwa M., Hayashi M., Ebisu S.. 2013; The sinR ortholog PGN_0088 encodes a transcriptional regulator that inhibits polysaccharide synthesis in Porphyromonas gingivalis ATCC 33277 biofilms. PLoS ONE8:e56017 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000013
Loading
/content/journal/micro/10.1099/mic.0.000013
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error