1887

Abstract

A static batch culture system inoculated with human faeces was used to determine the influence of essential oil compounds (EOCs) on mixed faecal microbiota. Bacteria were quantified using quantitative PCR of 16S rRNA genes. Incubation for 24 h of diluted faeces from six individuals caused enrichment of spp., but proportions of other major groups were unaffected. Thymol and geraniol at 500 p.p.m. suppressed total bacteria, resulting in minimal fermentation. Thymol at 100 p.p.m. had no effect, nor did eugenol or nerolidol at 100 or 500 p.p.m. except for a slight suppression of . Methyl isoeugenol at 100 or 500 p.p.m. suppressed the growth of total bacteria, accompanied by a large fall in the molar proportion of propionate formed. The relative abundance of was unaffected except with thymol at 500 p.p.m. The ability of EOCs to control numbers of the pathogen was investigated in a separate experiment, in which the faecal suspensions were amended by the addition of pure culture of . Numbers of were suppressed by thymol and methyl isoeugenol at 500 p.p.m. and to a lesser extent at 100 p.p.m. Eugenol and geraniol gave rather similar suppression of numbers at both 100 and 500 p.p.m. Nerolidol had no significant effect. It was concluded from these and previous pure-culture experiments that thymol and geraniol at around 100 p.p.m. could be effective in suppressing pathogens in the small intestine, with no concern for beneficial commensal colonic bacteria in the distal gut.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000009
2015-02-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/441.html?itemId=/content/journal/micro/10.1099/mic.0.000009&mimeType=html&fmt=ahah

References

  1. Anderson R. C. , Krueger N. A. , Byrd J. A. , Harvey R. B. , Callaway T. R. , Edrington T. S. , Nisbet D. J. . ( 2009; ). Effects of thymol and diphenyliodonium chloride against Campylobacter spp. during pure and mixed culture in vitro . . J Appl Microbiol 107:, 1258–1268. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bach H. J. , Tomanova J. , Schloter M. , Munch J. C. . ( 2002; ). Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. . J Microbiol Methods 49:, 235–245. [CrossRef] [PubMed]
    [Google Scholar]
  3. Benchaar C. , Calsamiglia S. , Chaves A. V. , Fraser G. R. , Colombatto D. , McAllister T. A. , Beauchemin K. A. . ( 2008; ). A review of plant-derived essential oils in ruminant nutrition and production. . Anim Feed Sci Technol 145:, 209–228. [CrossRef]
    [Google Scholar]
  4. Bergonzelli G. E. , Donnicola D. , Porta N. , Corthesy-Theulaz I. E. . ( 2003; ). Essential oils as components of a diet-based approach to management of Helicobacter infection. . Antimicrob Agents Chemother 47:, 3240–3246.[CrossRef]
    [Google Scholar]
  5. Brehm-Stecher B. F. , Johnson E. A. . ( 2003; ). Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. . Antimicrob Agents Chemother 47:, 3357–3360. [CrossRef] [PubMed]
    [Google Scholar]
  6. Burt S. . ( 2004; ). Essential oils: their antibacterial properties and potential applications in foods—a review. . Int J Food Microbiol 94:, 223–253. [CrossRef] [PubMed]
    [Google Scholar]
  7. Burt S. A. , Reinders R. D. . ( 2003; ). Antibacterial activity of selected plant essential oils against Escherichia coli O157 : H7. . Lett Appl Microbiol 36:, 162–167. [CrossRef] [PubMed]
    [Google Scholar]
  8. Delaquis P. J. , Stanich K. , Girard B. , Mazza G. . ( 2002; ). Antimicrobial activity of individual and mixed fractions of dill, cilantro, coriander and eucalyptus essential oils. . Int J Food Microbiol 74:, 101–109. [CrossRef] [PubMed]
    [Google Scholar]
  9. Eckburg P. B. , Bik E. M. , Bernstein C. N. , Purdom E. , Dethlefsen L. , Sargent M. , Gill S. R. , Nelson K. E. , Relman D. A. . ( 2005; ). Diversity of the human intestinal microbial flora. . Science 308:, 1635–1638.[CrossRef]
    [Google Scholar]
  10. Franks A. H. , Harmsen H. J. M. , Raangs G. C. , Jansen G. J. , Schut F. , Welling G. W. . ( 1998; ). Variations of bacterial populations in human feces measured by fluorescent in situ hybridization with group-specific 16S rRNA-targeted oligonucleotide probes. . Appl Environ Microbiol 64:, 3336–3345.[PubMed]
    [Google Scholar]
  11. Franz C. , Baser K. H. C. , Windisch W. . ( 2010; ). Essential oils and aromatic plants in animal feeding – a European perspective. A review. . Flavour Fragrance J 25:, 327–340. [CrossRef]
    [Google Scholar]
  12. Fuller Z. , Louis P. , Mihajlovski A. , Rungapamestry V. , Ratcliffe B. , Duncan A. J. . ( 2007; ). Influence of cabbage processing methods and prebiotic manipulation of colonic microflora on glucosinolate breakdown in man. . Br J Nutr 98:, 364–372. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gutierrez J. , Barry-Ryan C. , Bourke P. . ( 2008; ). The antimicrobial efficacy of plant essential oil combinations and interactions with food ingredients. . Int J Food Microbiol 124:, 91–97. [CrossRef] [PubMed]
    [Google Scholar]
  14. Hansen R. , Russell R. K. , Reiff C. , Louis P. , McIntosh F. , Berry S. H. , Mukhopadhya I. , Bisset W. M. , Barclay A. R. . & other authors ( 2012; ). Microbiota of de-novo pediatric IBD: increased Faecalibacterium prausnitzii and reduced bacterial diversity in Crohn’s but not in ulcerative colitis. . Am J Gastroenterol 107:, 1913–1922. [CrossRef] [PubMed]
    [Google Scholar]
  15. Hobson P. N. . ( 1969; ). Rumen bacteria. . In Methods in Microbiology, vol. 3B, pp. 133–149. Edited by Norris J. R. , Ribbons D. W. . . London:: Academic Press;.
    [Google Scholar]
  16. Hoyles L. , McCartney A. L. . ( 2009; ). What do we mean when we refer to Bacteroidetes populations in the human gastrointestinal microbiota?. FEMS Microbiol Lett 299:, 175–183. [CrossRef] [PubMed]
    [Google Scholar]
  17. Lambert R. J. W. , Skandamis P. N. , Coote P. J. , Nychas G.-J. E. . ( 2001; ). A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. . J Appl Microbiol 91:, 453–462. [CrossRef] [PubMed]
    [Google Scholar]
  18. Lane D. J. . ( 1991; ). 16S/23S rRNA sequencing. . In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by Stackebrandt E. , Goodfellow M. . . New York:: Wiley;.
    [Google Scholar]
  19. Lay C. , Rigottier-Gois L. , Holmstrøm K. , Rajilic M. , Vaughan E. E. , de Vos W. M. , Collins M. D. , Thiel R. , Namsolleck P. . & other authors ( 2005; ). Colonic microbiota signatures across five northern European countries. . Appl Environ Microbiol 71:, 4153–4155. [CrossRef] [PubMed]
    [Google Scholar]
  20. Louis P. , Scott K. P. , Duncan S. H. , Flint H. J. . ( 2007; ). Understanding the effects of diet on bacterial metabolism in the large intestine. . J Appl Microbiol 102:, 1197–1208. [CrossRef] [PubMed]
    [Google Scholar]
  21. MacFarlane G. T. , Hay S. , Gibson G. R. . ( 1989; ). Influence of mucin on glycosidase, protease and arylamidase activities of human gut bacteria grown in a 3-stage continuous culture system. . J Appl Bacteriol 66:, 407–417. [CrossRef] [PubMed]
    [Google Scholar]
  22. Marteau P. , Pochart P. , Doré J. , Béra-Maillet C. , Bernalier A. , Corthier G. . ( 2001; ). Comparative study of bacterial groups within the human cecal and fecal microbiota. . Appl Environ Microbiol 67:, 4939–4942. [CrossRef] [PubMed]
    [Google Scholar]
  23. McDonald L. C. . ( 2005; ). Clostridium difficile: responding to a new threat from an old enemy. . Infect Control Hosp Epidemiol 26:, 672–675. [CrossRef] [PubMed]
    [Google Scholar]
  24. McIntosh F. M. , Williams P. , Losa R. , Wallace R. J. , Beever D. A. , Newbold C. J. . ( 2003; ). Effects of essential oils on ruminal microorganisms and their protein metabolism. . Appl Environ Microbiol 69:, 5011–5014. [CrossRef] [PubMed]
    [Google Scholar]
  25. Michiels J. , Missotten J. , Dierick N. , Fremaut D. , Maene P. , De Smet S. . ( 2008; ). In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. . J Sci Food Agric 88:, 2371–2381. [CrossRef]
    [Google Scholar]
  26. Ottenstein D. M. , Bartley D. A. . ( 1971; ). Separation of free acids C2–C5 in dilute aqueous solution column technology. . J Chromatogr Sci 9:, 673–681. [CrossRef]
    [Google Scholar]
  27. Ouwehand A. C. , Tiihonen K. , Kettunen H. , Peuranen S. , Schulze H. , Rautonen N. . ( 2010; ). In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. . Vet Med 55:, 71–78.
    [Google Scholar]
  28. Payne A. N. , Zihler A. , Chassard C. , Lacroix C. . ( 2012; ). Advances and perspectives in in vitro human gut fermentation modeling. . Trends Biotechnol 30:, 17–25. [CrossRef] [PubMed]
    [Google Scholar]
  29. Ramirez-Farias C. , Slezak K. , Fuller Z. , Duncan A. , Holtrop G. , Louis P. . ( 2009; ). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii . . Br J Nutr 101:, 541–550. [CrossRef] [PubMed]
    [Google Scholar]
  30. Rinttilä T. , Kassinen A. , Malinen E. , Krogius L. , Palva A. . ( 2004; ). Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. . J Appl Microbiol 97:, 1166–1177. [CrossRef] [PubMed]
    [Google Scholar]
  31. Si W. , Gong J. , Tsao R. , Zhou T. , Yu H. , Poppe C. , Johnson R. , Du Z. . ( 2006; ). Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. . J Appl Microbiol 100:, 296–305. [CrossRef] [PubMed]
    [Google Scholar]
  32. Sokol H. , Pigneur B. , Watterlot L. , Lakhdari O. , Bermúdez-Humarán L. G. , Gratadoux J. J. , Blugeon S. , Bridonneau C. , Furet J. P. . & other authors ( 2008; ). Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. . Proc Natl Acad Sci U S A 105:, 16731–16736. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tap J. , Mondot S. , Levenez F. , Pelletier E. , Caron C. , Furet J. P. , Ugarte E. , Munoz-Tamayo R. , Le Paslier D. , Nalin R. , Doré J. , Leclerc M. . ( 2009; ). Towards the healthy human intestinal microbiota phylogenetic core?. Microbial Ecology 57:, 580–581.
    [Google Scholar]
  34. Thapa D. , Losa R. , Zweifel B. , Wallace R. J. . ( 2012; ). Sensitivity of pathogenic and commensal bacteria from the human colon to essential oils. . Microbiology 158:, 2870–2877. [CrossRef] [PubMed]
    [Google Scholar]
  35. van den Bogert B. , Erkus O. , Boekhorst J. de G.M. , de Goffau M. , Smid E. J. , Zoetendal E. G. , Kleerebezem M. . ( 2013; ). Diversity of human small intestinal Streptococcus and Veillonella populations. . FEMS Microbiol Ecol 85:, 376–388. [CrossRef] [PubMed]
    [Google Scholar]
  36. Wallace R. J. . ( 2004; ). Antimicrobial properties of plant secondary metabolites. . Proc Nutr Soc 63:, 621–629. [CrossRef] [PubMed]
    [Google Scholar]
  37. Wallace R. J. , McEwan N. R. , McIntosh F. M. , Teferedegne B. , Newbold C. J. . ( 2002; ). Natural products as manipulators of rumen fermentation. . Asian-Austr J Anim Sci 15:, 1458–1468. [CrossRef]
    [Google Scholar]
  38. Wallace R. J. , Oleszek W. , Franz C. , Hahn I. , Baser K. H. , Mathe A. , Teichmann K. . ( 2010; ). Dietary plant bioactives for poultry health and productivity. . Br Poult Sci 51:, 461–487. [CrossRef] [PubMed]
    [Google Scholar]
  39. Weisburg W. G. , Barns S. M. , Pelletier D. A. , Lane D. J. . ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed]
    [Google Scholar]
  40. Yap P. S. X. , Lim S. H. E. , Hu C. P. , Yiap B. C. . ( 2013; ). Combination of essential oils and antibiotics reduce antibiotic resistance in plasmid-conferred multidrug resistant bacteria. . Phytomedicine 20:, 710–713. [CrossRef] [PubMed]
    [Google Scholar]
  41. Yu Z. , Morrison M. . ( 2004; ). Improved extraction of PCR-quality community DNA from digesta and fecal samples. . Biotechniques 36:, 808–812.[PubMed]
    [Google Scholar]
  42. Yutin N. , Galperin M. Y. . ( 2013; ). A genomic update on clostridial phylogeny: Gram-negative spore formers and other misplaced clostridia. . Environ Microbiol 15:, 2631–2641.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000009
Loading
/content/journal/micro/10.1099/mic.0.000009
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error