1887

Abstract

’s metabolic pathways have been studied for decades due to its metabolic diversity and industrial value, yet many details of its metabolism continue to emerge. The flux through the recently discovered pentose phosphoketolase pathway (PKP) in has been determined for growth on xylose but transcriptional analysis indicated the pathway may have a greater contribution to arabinose metabolism. To elucidate the role of xylulose-5-phosphate/fructose-6-phosphate phosphoketolase (XFP), and the PKP in , experimental and computational metabolic isotope analyses were performed under growth conditions of glucose or varying concentrations of xylose and arabinose. A positional bias in labelling between carbons 2 and 4 of butyrate was found and posited to be due to an enzyme isotope effect of the thiolase enzyme. A correction for the positional bias was applied, which resulted in reduction of residual error. Comparisons between model solutions with low residual error indicated flux through each of the two XFP reactions was variable, while the combined flux of the reactions remained relatively constant. PKP utilization increased with increasing xylose concentration and this trend was further pronounced during growth on arabinose. Mutation of the gene encoding XFP almost completely abolished flux through the PKP during growth on arabinose and resulted in decreased acetate/butyrate ratios. Greater flux through the PKP during growth on arabinose when compared with xylose indicated the pathway’s primary role in is arabinose metabolism.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000008
2015-02-01
2019-11-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/430.html?itemId=/content/journal/micro/10.1099/mic.0.000008&mimeType=html&fmt=ahah

References

  1. Albersheim P., Darvill A., Roberts K., Sederoff R., Staehelin A.. ( 2011;). Plant Cell Walls. New York:: Garland Science, Taylor and Francis Group;.
    [Google Scholar]
  2. Amador-Noguez D., Feng X. J., Fan J., Roquet N., Rabitz H., Rabinowitz J. D.. ( 2010;). Systems-level metabolic flux profiling elucidates a complete, bifurcated tricarboxylic acid cycle in Clostridium acetobutylicum. . J Bacteriol 192:, 4452–4461. [CrossRef][PubMed]
    [Google Scholar]
  3. Au J., Choi J., Jones S. W., Venkataramanan K. P., Antoniewicz M. R.. ( 2014;). Parallel labeling experiments validate Clostridium acetobutylicum metabolic network model for 13C metabolic flux analysis. . Metab Eng 26:, 23–33. [CrossRef][PubMed]
    [Google Scholar]
  4. Cai X., Servinsky M., Kiel J., Sund C., Bennett G. N.. ( 2013;). Analysis of redox responses during TNT transformation by Clostridium acetobutylicum ATCC 824 and mutants exhibiting altered metabolism. . Appl Microbiol Biotechnol 97:, 4651–4663. [CrossRef][PubMed]
    [Google Scholar]
  5. Crown S. B., Indurthi D. C., Ahn W. S., Choi J., Papoutsakis E. T., Antoniewicz M. R.. ( 2011;). Resolving the TCA cycle and pentose-phosphate pathway of Clostridium acetobutylicum ATCC 824: isotopomer analysis, in vitro activities and expression analysis. . Biotechnol J 6:, 300–305. [CrossRef][PubMed]
    [Google Scholar]
  6. Davies R.. ( 1942;). Studies on the acetone-butyl alcohol fermentation: intermediates in the fermentation of glucose by Cl. acetobutylicum. 3. Potassium as an essential factor in the fermentation of maize meal by Cl. acetobutylicum (BY). . Biochem J 36:, 582–599.[PubMed]
    [Google Scholar]
  7. Desai R. P., Nielsen L. K., Papoutsakis E. T.. ( 1999;). Stoichiometric modeling of Clostridium acetobutylicum fermentations with non-linear constraints. . J Biotechnol 71:, 191–205. [CrossRef][PubMed]
    [Google Scholar]
  8. Finch A. S., Mackie T. D., Sund C. J., Sumner J. J.. ( 2011;). Metabolite analysis of Clostridium acetobutylicum: fermentation in a microbial fuel cell. . Bioresour Technol 102:, 312–315. [CrossRef][PubMed]
    [Google Scholar]
  9. Follstad B. D., Stephanopoulos G.. ( 1998;). Effect of reversible reactions on isotope label redistribution analysis of the pentose phosphate pathway. . Eur J Biochem 252:, 360–371. [CrossRef][PubMed]
    [Google Scholar]
  10. Gu Y., Jiang Y., Yang S., Jiang W.. ( 2014;). Utilization of economical substrate-derived carbohydrates by solventogenic clostridia: pathway dissection, regulation and engineering. . Curr Opin Biotechnol 29:, 124–131. [CrossRef][PubMed]
    [Google Scholar]
  11. Haus S., Jabbari S., Millat T., Janssen H., Fischer R. J., Bahl H., King J. R., Wolkenhauer O.. ( 2011;). A systems biology approach to investigate the effect of pH-induced gene regulation on solvent production by Clostridium acetobutylicum in continuous culture. . BMC Syst Biol 5:, 10. [CrossRef][PubMed]
    [Google Scholar]
  12. Heap J. T., Pennington O. J., Cartman S. T., Carter G. P., Minton N. P.. ( 2007;). The ClosTron: a universal gene knock-out system for the genus Clostridium. . J Microbiol Methods 70:, 452–464. [CrossRef][PubMed]
    [Google Scholar]
  13. Heap J. T., Kuehne S. A., Ehsaan M., Cartman S. T., Cooksley C. M., Scott J. C., Minton N. P.. ( 2010;). The ClosTron: mutagenesis in Clostridium refined and streamlined. . J Microbiol Methods 80:, 49–55. [CrossRef][PubMed]
    [Google Scholar]
  14. Hönicke D., Janssen H., Grimmler C., Ehrenreich A., Lütke-Eversloh T.. ( 2012;). Global transcriptional changes of Clostridium acetobutylicum cultures with increased butanol : acetone ratios. . New Biotechnol 29:, 485–493. [CrossRef][PubMed]
    [Google Scholar]
  15. Johnson M. J., Peterson W. H., Fred E. B.. ( 1931;). Oxidation and reduction relations between substrate and products in the acetone-butyl alcohol fermentation. . J Biol Chem 91:, 569–591.
    [Google Scholar]
  16. Jones D. T., Woods D. R.. ( 1986;). Acetone-butanol fermentation revisited. . Microbiol Rev 50:, 484–524.[PubMed]
    [Google Scholar]
  17. Kim B. H., Bellows P., Datta R., Zeikus J. G.. ( 1984;). Control of carbon and electron flow in Clostridium acetobutylicum fermentations: utilization of carbon monoxide to inhibit hydrogen production and to enhance butanol yields. . Appl Environ Microbiol 48:, 764–770.[PubMed]
    [Google Scholar]
  18. Lee J., Yun H., Feist A. M., Palsson B. O., Lee S. Y.. ( 2008;). Genome-scale reconstruction and in silico analysis of the Clostridium acetobutylicum ATCC 824 metabolic network. . Appl Microbiol Biotechnol 80:, 849–862. [CrossRef][PubMed]
    [Google Scholar]
  19. Lehmann D., Lütke-Eversloh T.. ( 2011;). Switching Clostridium acetobutylicum to an ethanol producer by disruption of the butyrate/butanol fermentative pathway. . Metab Eng 13:, 464–473. [CrossRef][PubMed]
    [Google Scholar]
  20. Lehmann D., Radomski N., Lütke-Eversloh T.. ( 2012a;). New insights into the butyric acid metabolism of Clostridium acetobutylicum. . Appl Microbiol Biotechnol 96:, 1325–1339. [CrossRef][PubMed]
    [Google Scholar]
  21. Lehmann D., Hönicke D., Ehrenreich A., Schmidt M., Weuster-Botz D., Bahl H., Lütke-Eversloh T.. ( 2012b;). Modifying the product pattern of Clostridium acetobutylicum: physiological effects of disrupting the acetate and acetone formation pathways. . Appl Microbiol Biotechnol 94:, 743–754. [CrossRef][PubMed]
    [Google Scholar]
  22. Li R. D., Li Y. Y., Lu L. Y., Ren C., Li Y. X., Liu L.. ( 2011;). An improved kinetic model for the acetone-butanol-ethanol pathway of Clostridium acetobutylicum and model-based perturbation analysis. . BMC Syst Biol 5: (Suppl. 1), S12. [CrossRef][PubMed]
    [Google Scholar]
  23. Liu L., Zhang L., Tang W., Gu Y., Hua Q., Yang S., Jiang W., Yang C.. ( 2012;). Phosphoketolase pathway for xylose catabolism in Clostridium acetobutylicum revealed by 13C metabolic flux analysis. . J Bacteriol 194:, 5413–5422. [CrossRef][PubMed]
    [Google Scholar]
  24. Lütke-Eversloh T., Bahl H.. ( 2011;). Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. . Curr Opin Biotechnol 22:, 634–647. [CrossRef][PubMed]
    [Google Scholar]
  25. McAnulty M. J., Yen J. Y., Freedman B. G., Senger R. S.. ( 2012;). Genome-scale modeling using flux ratio constraints to enable metabolic engineering of clostridial metabolism in silico. . BMC Syst Biol 6:, 42. [CrossRef][PubMed]
    [Google Scholar]
  26. Nigam P. S., Singh A.. ( 2011;). Production of liquid biofuels from renewable resources. . Prog Energ Combust 37:, 52–68. [CrossRef]
    [Google Scholar]
  27. Papoutsakis E. T.. ( 1984;). Equations and calculations for fermentations of butyric acid bacteria. . Biotechnol Bioeng 26:, 174–187. [CrossRef][PubMed]
    [Google Scholar]
  28. Perutka J., Wang W. J., Goerlitz D., Lambowitz A. M.. ( 2004;). Use of computer-designed group II introns to disrupt Escherichia coli DExH/D-box protein and DNA helicase genes. . J Mol Biol 336:, 421–439. [CrossRef][PubMed]
    [Google Scholar]
  29. Quek L. E., Wittmann C., Nielsen L. K., Krömer J. O.. ( 2009;). OpenFLUX: efficient modelling software for 13C-based metabolic flux analysis. . Microb Cell Fact 8:, 25. [CrossRef][PubMed]
    [Google Scholar]
  30. Rodionov D. A., Mironov A. A., Gelfand M. S.. ( 2001;). Transcriptional regulation of pentose utilisation systems in the Bacillus/Clostridium group of bacteria. . FEMS Microbiol Lett 205:, 305–314. [CrossRef][PubMed]
    [Google Scholar]
  31. Senger R. S., Papoutsakis E. T.. ( 2008a;). Genome-scale model for Clostridium acetobutylicum: Part I. Metabolic network resolution and analysis. . Biotechnol Bioeng 101:, 1036–1052. [CrossRef][PubMed]
    [Google Scholar]
  32. Senger R. S., Papoutsakis E. T.. ( 2008b;). Genome-scale model for Clostridium acetobutylicum: Part II. Development of specific proton flux states and numerically determined sub-systems. . Biotechnol Bioeng 101:, 1053–1071. [CrossRef][PubMed]
    [Google Scholar]
  33. Servinsky M. D., Julin D. A.. ( 2007;). Effect of a recD mutation on DNA damage resistance and transformation in Deinococcus radiodurans. . J Bacteriol 189:, 5101–5107. [CrossRef][PubMed]
    [Google Scholar]
  34. Servinsky M. D., Kiel J. T., Dupuy N. F., Sund C. J.. ( 2010;). Transcriptional analysis of differential carbohydrate utilization by Clostridium acetobutylicum. . Microbiology 156:, 3478–3491. [CrossRef][PubMed]
    [Google Scholar]
  35. Servinsky M. D., Germane K. L., Liu S., Kiel J. T., Clark A. M., Shankar J., Sund C. J.. ( 2012;). Arabinose is metabolized via a phosphoketolase pathway in Clostridium acetobutylicum ATCC 824. . J Ind Microbiol Biotechnol 39:, 1859–1867. [CrossRef][PubMed]
    [Google Scholar]
  36. Sonderegger M., Schümperli M., Sauer U.. ( 2004;). Metabolic engineering of a phosphoketolase pathway for pentose catabolism in Saccharomyces cerevisiae. . Appl Environ Microbiol 70:, 2892–2897. [CrossRef][PubMed]
    [Google Scholar]
  37. Srour O., Young J. D., Eldar Y. C.. ( 2011;). Fluxomers: a new approach for 13C metabolic flux analysis. . BMC Syst Biol 5:, 129. [CrossRef][PubMed]
    [Google Scholar]
  38. Sund C. J., McMasters S., Crittenden S. R., Harrell L. E., Sumner J. J.. ( 2007;). Effect of electron mediators on current generation and fermentation in a microbial fuel cell. . Appl Microbiol Biotechnol 76:, 561–568. [CrossRef][PubMed]
    [Google Scholar]
  39. Vasconcelos I., Girbal L., Soucaille P.. ( 1994;). Regulation of carbon and electron flow in Clostridium acetobutylicum grown in chemostat culture at neutral pH on mixtures of glucose and glycerol. . J Bacteriol 176:, 1443–1450.[PubMed]
    [Google Scholar]
  40. Voigt C., Bahl H., Fischer R. J.. ( 2014;). Identification of PTSFru as the major fructose uptake system of Clostridium acetobutylicum. . Appl Microbiol Biotechnol 98:, 7161–7172. [CrossRef][PubMed]
    [Google Scholar]
  41. Wang S., Zhu Y., Zhang Y., Li Y.. ( 2012;). Controlling the oxidoreduction potential of the culture of Clostridium acetobutylicum leads to an earlier initiation of solventogenesis, thus increasing solvent productivity. . Appl Microbiol Biotechnol 93:, 1021–1030. [CrossRef][PubMed]
    [Google Scholar]
  42. Wiesenborn D. P., Rudolph F. B., Papoutsakis E. T.. ( 1988;). Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. . Appl Environ Microbiol 54:, 2717–2722.[PubMed]
    [Google Scholar]
  43. Wietzke M., Bahl H.. ( 2012;). The redox-sensing protein Rex, a transcriptional regulator of solventogenesis in Clostridium acetobutylicum. . Appl Microbiol Biotechnol 96:, 749–761. [CrossRef][PubMed]
    [Google Scholar]
  44. Zhang L., Leyn S. A., Gu Y., Jiang W., Rodionov D. A., Yang C.. ( 2012;). Ribulokinase and transcriptional regulation of arabinose metabolism in Clostridium acetobutylicum. . J Bacteriol 194:, 1055–1064. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000008
Loading
/content/journal/micro/10.1099/mic.0.000008
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error