1887

Abstract

The fungal pathogen has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in , we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000006
2015-02-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/300.html?itemId=/content/journal/micro/10.1099/mic.0.000006&mimeType=html&fmt=ahah

References

  1. Atanasova R. , Angoulvant A. , Tefit M. , Gay F. , Guitard J. , Mazier D. , Fairhead C. , Hennequin C. . ( 2013; ). A mouse model for Candida glabrata hematogenous disseminated infection starting from the gut: evaluation of strains with different adhesion properties. . PLoS ONE 8:, e69664. [CrossRef] [PubMed]
    [Google Scholar]
  2. Ausubel F. M. , Brent R. , Kingston R. E. , Moore D. D. , Seidman J. G. , Smith J. A. , Struhl K. . (editors) ( 2000; ). Current Protocols in Molecular Biology. New York:: John Wiley;.
    [Google Scholar]
  3. Beauchamp C. , Fridovich I. . ( 1971; ). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. . Anal Biochem 44:, 276–287. [CrossRef] [PubMed]
    [Google Scholar]
  4. Biliński T. , Krawiec Z. , Liczmański A. , Litwińska J. . ( 1985; ). Is hydroxyl radical generated by the Fenton reaction in vivo?. Biochem Biophys Res Commun 130:, 533–539. [CrossRef] [PubMed]
    [Google Scholar]
  5. Boeke J. D. , LaCroute F. , Fink G. R. . ( 1984; ). A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. . Mol Gen Genet 197:, 345–346. [CrossRef] [PubMed]
    [Google Scholar]
  6. Bonatto D. . ( 2007; ). A systems biology analysis of protein–protein interactions between yeast superoxide dismutases and DNA repair pathways. . Free Radic Biol Med 43:, 557–567. [CrossRef] [PubMed]
    [Google Scholar]
  7. Bradford M. M. . ( 1976; ). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. . Anal Biochem 72:, 248–254. [CrossRef] [PubMed]
    [Google Scholar]
  8. Branzei D. , Foiani M. . ( 2007; ). Interplay of replication checkpoints and repair proteins at stalled replication forks. . DNA Repair (Amst) 6:, 994–1003. [CrossRef] [PubMed]
    [Google Scholar]
  9. Castano I. , Kaur R. , Pan S. , Cregg R. , Penas A. L. , Guo N. , Biery M. C. , Craig N. L. , Cormack B. P. . ( 2003; ). Tn7-based genome-wide random insertional mutagenesis of Candida glabrata . . Genome Res 13:, 905–915. [CrossRef] [PubMed]
    [Google Scholar]
  10. Claros M. G. , Vincens P. . ( 1996; ). Computational method to predict mitochondrially imported proteins and their targeting sequences. . Eur J Biochem 241:, 779–786. [CrossRef] [PubMed]
    [Google Scholar]
  11. Cormack B. P. , Ghori N. , Falkow S. . ( 1999; ). An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. . Science 285:, 578–582. [CrossRef] [PubMed]
    [Google Scholar]
  12. Cuéllar-Cruz M. , Briones-Martin-del-Campo M. , Cañas-Villamar I. , Montalvo-Arredondo J. , Riego-Ruiz L. , Castaño I. , De Las Peñas A. . ( 2008; ). High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. . Eukaryot Cell 7:, 814–825. [CrossRef] [PubMed]
    [Google Scholar]
  13. Cuéllar-Cruz M. , Castaño I. , Arroyo-Helguera O. , De Las Peñas A. . ( 2009; ). Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. . Mem Inst Oswaldo Cruz 104:, 649–654. [CrossRef] [PubMed]
    [Google Scholar]
  14. David S. S. , O’Shea V. L. , Kundu S. . ( 2007; ). Base-excision repair of oxidative DNA damage. . Nature 447:, 941–950. [CrossRef] [PubMed]
    [Google Scholar]
  15. Dukan S. , Nyström T. . ( 1999; ). Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. . J Biol Chem 274:, 26027–26032. [CrossRef] [PubMed]
    [Google Scholar]
  16. Fabrizio P. , Longo V. D. . ( 2003; ). The chronological life span of Saccharomyces cerevisiae . . Aging Cell 2:, 73–81. [CrossRef] [PubMed]
    [Google Scholar]
  17. Farr S. B. , D’Ari R. , Touati D. . ( 1986; ). Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. . Proc Natl Acad Sci U S A 83:, 8268–8272. [CrossRef] [PubMed]
    [Google Scholar]
  18. Fazius F. , Shelest E. , Gebhardt P. , Brock M. . ( 2012; ). The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. . Mol Microbiol 86:, 1508–1530. [CrossRef] [PubMed]
    [Google Scholar]
  19. Fink R. C. , Scandalios J. G. . ( 2002; ). Molecular evolution and structure–function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. . Arch Biochem Biophys 399:, 19–36. [CrossRef] [PubMed]
    [Google Scholar]
  20. Flint D. H. , Tuminello J. F. , Emptage M. H. . ( 1993; ). The inactivation of Fe-S cluster containing hydro-lyases by superoxide. . J Biol Chem 268:, 22369–22376.[PubMed]
    [Google Scholar]
  21. Fridovich I. . ( 1995; ). Superoxide radical and superoxide dismutases. . Annu Rev Biochem 64:, 97–112. [CrossRef] [PubMed]
    [Google Scholar]
  22. Gangloff S. P. , Marguet D. , Lauquin G. J. . ( 1990; ). Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. . Mol Cell Biol 10:, 3551–3561.[PubMed]
    [Google Scholar]
  23. Gralla E. B. , Kosman D. J. . ( 1992; ). Molecular genetics of superoxide dismutases in yeasts and related fungi. . Adv Genet 30:, 251–319. [CrossRef] [PubMed]
    [Google Scholar]
  24. Gralla E. B. , Valentine J. S. . ( 1991; ). Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. . J Bacteriol 173:, 5918–5920.[PubMed]
    [Google Scholar]
  25. Gutiérrez-Escobedo G. , Orta-Zavalza E. , Castaño I. , De Las Peñas A. . ( 2013; ). Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata . . Curr Genet 59:, 91–106. [CrossRef] [PubMed]
    [Google Scholar]
  26. Hall B. M. , Ma C. X. , Liang P. , Singh K. K. . ( 2009; ). Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbruck fluctuation analysis. . Bioinformatics 25:, 1564–1565. [CrossRef] [PubMed]
    [Google Scholar]
  27. Hampsey M. . ( 1997; ). A review of phenotypes in Saccharomyces cerevisiae . . Yeast 13:, 1099–1133. [CrossRef] [PubMed]
    [Google Scholar]
  28. Herker E. , Jungwirth H. , Lehmann K. A. , Maldener C. , Fröhlich K. U. , Wissing S. , Büttner S. , Fehr M. , Sigrist S. , Madeo F. . ( 2004; ). Chronological aging leads to apoptosis in yeast. . J Cell Biol 164:, 501–507. [CrossRef] [PubMed]
    [Google Scholar]
  29. Higgins D. G. , Thompson J. D. , Gibson T. J. . ( 1996; ). Using clustal for multiple sequence alignments. . Methods Enzymol 266:, 383–402. [CrossRef] [PubMed]
    [Google Scholar]
  30. Huang M. E. , Rio A. G. I. , Nicolas A. , Kolodner R. D. . ( 2003; ). A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. . Proc Natl Acad Sci U S A 100:, 11529–11534.[CrossRef]
    [Google Scholar]
  31. Hwang C. S. , Rhie G. E. , Oh J. H. , Huh W. K. , Yim H. S. , Kang S. O. . ( 2002; ). Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. . Microbiology 148:, 3705–3713.[PubMed]
    [Google Scholar]
  32. Jacobsen I. D. , Grosse K. , Berndt A. , Hube B. . ( 2011; ). Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. . PLoS ONE 6:, e19741. [CrossRef] [PubMed]
    [Google Scholar]
  33. Kaur R. , Domergue R. , Zupancic M. L. , Cormack B. P. . ( 2005; ). A yeast by any other name: Candida glabrata and its interaction with the host. . Curr Opin Microbiol 8:, 378–384. [CrossRef] [PubMed]
    [Google Scholar]
  34. Kaur R. , Ma B. , Cormack B. P. . ( 2007; ). A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata . . Proc Natl Acad Sci U S A 104:, 7628–7633. [CrossRef] [PubMed]
    [Google Scholar]
  35. Keppler-Ross S. , Douglas L. , Konopka J. B. , Dean N. . ( 2010; ). Recognition of yeast by murine macrophages requires mannan but not glucan. . Eukaryot Cell 9:, 1776–1787. [CrossRef] [PubMed]
    [Google Scholar]
  36. Keyer K. , Imlay J. A. . ( 1996; ). Superoxide accelerates DNA damage by elevating free-iron levels. . Proc Natl Acad Sci U S A 93:, 13635–13640. [CrossRef] [PubMed]
    [Google Scholar]
  37. Kuwayama H. , Obara S. , Morio T. , Katoh M. , Urushihara H. , Tanaka Y. . ( 2002; ). PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. . Nucleic Acids Res 30:, e2. [CrossRef] [PubMed]
    [Google Scholar]
  38. Kwon E. S. , Jeong J. H. , Roe J. H. . ( 2006; ). Inactivation of homocitrate synthase causes lysine auxotrophy in copper/zinc-containing superoxide dismutase-deficient yeast Schizosaccharomyces pombe . . J Biol Chem 281:, 1345–1351. [CrossRef] [PubMed]
    [Google Scholar]
  39. Lang G. I. , Murray A. W. . ( 2008; ). Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae . . Genetics 178:, 67–82. [CrossRef] [PubMed]
    [Google Scholar]
  40. Langford P. R. , Sansone A. , Valenti P. , Battistoni A. , Kroll J. S. . ( 2002; ). Bacterial superoxide dismutase and virulence. . Methods Enzymol 349:, 155–166. [CrossRef] [PubMed]
    [Google Scholar]
  41. Li Y. , Huang T. T. , Carlson E. J. , Melov S. , Ursell P. C. , Olson J. L. , Noble L. J. , Yoshimura M. P. , Berger C. . & other authors ( 1995; ). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. . Nat Genet 11:, 376–381. [CrossRef] [PubMed]
    [Google Scholar]
  42. Liochev S. I. , Fridovich I. . ( 1999; ). Superoxide and iron: partners in crime. . IUBMB Life 48:, 157–161. [CrossRef] [PubMed]
    [Google Scholar]
  43. Longo V. D. , Gralla E. B. , Valentine J. S. . ( 1996; ). Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo . . J Biol Chem 271:, 12275–12280. [CrossRef] [PubMed]
    [Google Scholar]
  44. Longo V. D. , Liou L. L. , Valentine J. S. , Gralla E. B. . ( 1999; ). Mitochondrial superoxide decreases yeast survival in stationary phase. . Arch Biochem Biophys 365:, 131–142. [CrossRef] [PubMed]
    [Google Scholar]
  45. Miller R. A. , Britigan B. E. . ( 1997; ). Role of oxidants in microbial pathophysiology. . Clin Microbiol Rev 10:, 1–18.[PubMed]
    [Google Scholar]
  46. Murakami C. J. , Burtner C. R. , Kennedy B. K. , Kaeberlein M. . ( 2008; ). A method for high-throughput quantitative analysis of yeast chronological life span. . J Gerontol A Biol Sci Med Sci 63:, 113–121. [CrossRef] [PubMed]
    [Google Scholar]
  47. Mutoh N. , Nakagawa C. W. , Yamada K. . ( 2002; ). Characterization of Cu, Zn-superoxide dismutase-deficient mutant of fission yeast Schizosaccharomyces pombe . . Curr Genet 41:, 82–88. [CrossRef] [PubMed]
    [Google Scholar]
  48. Narasipura S. D. , Ault J. G. , Behr M. J. , Chaturvedi V. , Chaturvedi S. . ( 2003; ). Characterization of Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. . Mol Microbiol 47:, 1681–1694. [CrossRef] [PubMed]
    [Google Scholar]
  49. Narasipura S. D. , Chaturvedi V. , Chaturvedi S. . ( 2005; ). Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. . Mol Microbiol 55:, 1782–1800. [CrossRef] [PubMed]
    [Google Scholar]
  50. Orta-Zavalza E. , Guerrero-Serrano G. , Gutiérrez-Escobedo G. , Cañas-Villamar I. , Juárez-Cepeda J. , Castaño I. , De Las Peñas A. . ( 2013; ). Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata . . Mol Microbiol 88:, 1135–1148. [CrossRef] [PubMed]
    [Google Scholar]
  51. Pfaller M. A. , Diekema D. J. . ( 2007; ). Epidemiology of invasive candidiasis: a persistent public health problem. . Clin Microbiol Rev 20:, 133–163. [CrossRef] [PubMed]
    [Google Scholar]
  52. Rasmussen A. K. , Chatterjee A. , Rasmussen L. J. , Singh K. K. . ( 2003; ). Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae . . Nucleic Acids Res 31:, 3909–3917. [CrossRef] [PubMed]
    [Google Scholar]
  53. Roetzer A. , Klopf E. , Gratz N. , Marcet-Houben M. , Hiller E. , Rupp S. , Gabaldón T. , Kovarik P. , Schüller C. . ( 2011; ). Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. . FEBS Lett 585:, 319–327. [CrossRef] [PubMed]
    [Google Scholar]
  54. Seider K. , Brunke S. , Schild L. , Jablonowski N. , Wilson D. , Majer O. , Barz D. , Haas A. , Kuchler K. . & other authors ( 2011; ). The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. . J Immunol 187:, 3072–3086. [CrossRef] [PubMed]
    [Google Scholar]
  55. Sherman F. , Fink G. R. , Hicks J. B. . ( 1986; ). Methods in Yeast Genetics. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  56. Slupphaug G. , Kavli B. , Krokan H. E. . ( 2003; ). The interacting pathways for prevention and repair of oxidative DNA damage. . Mutat Res 531:, 231–251. [CrossRef] [PubMed]
    [Google Scholar]
  57. Smith M. W. , Doolittle R. F. . ( 1992; ). A comparison of evolutionary rates of the two major kinds of superoxide dismutase. . J Mol Evol 34:, 175–184. [CrossRef] [PubMed]
    [Google Scholar]
  58. Srinivasan C. , Liba A. , Imlay J. A. , Valentine J. S. , Gralla E. B. . ( 2000; ). Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. . J Biol Chem 275:, 29187–29192. [CrossRef] [PubMed]
    [Google Scholar]
  59. Sturtz L. A. , Diekert K. , Jensen L. T. , Lill R. , Culotta V. C. . ( 2001; ). A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. . J Biol Chem 276:, 38084–38089.[PubMed]
    [Google Scholar]
  60. Toyn J. H. , Gunyuzlu P. L. , White W. H. , Thompson L. A. , Hollis G. F. . ( 2000; ). A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. . Yeast 16:, 553–560. [CrossRef] [PubMed]
    [Google Scholar]
  61. Wallace M. A. , Liou L. L. , Martins J. , Clement M. H. , Bailey S. , Longo V. D. , Valentine J. S. , Gralla E. B. . ( 2004; ). Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. . J Biol Chem 279:, 32055–32062. [CrossRef] [PubMed]
    [Google Scholar]
  62. Weisiger R. A. , Fridovich I. . ( 1973; ). Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. . J Biol Chem 248:, 4793–4796.[PubMed]
    [Google Scholar]
  63. Xiao W. , Chow B. L. , Rathgeber L. . ( 1996; ). The repair of DNA methylation damage in Saccharomyces cerevisiae . . Curr Genet 30:, 461–468. [CrossRef] [PubMed]
    [Google Scholar]
  64. Youseff B. H. , Holbrook E. D. , Smolnycki K. A. , Rappleye C. A. . ( 2012; ). Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. . PLoS Pathog 8:, e1002713. [CrossRef] [PubMed]
    [Google Scholar]
  65. Zordan R. E. , Ren Y. , Pan S. J. , Rotondo G. , De Las Peñas A. , Iluore J. , Cormack B. P. . ( 2013; ). Expression plasmids for use in Candida glabrata. . G3 (Bethesda) 3:, 1675–1686. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000006
Loading
/content/journal/micro/10.1099/mic.0.000006
Loading

Data & Media loading...

Supplements

Supplementary Data



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error