1887

Abstract

The fungal pathogen has a well-defined oxidative stress response, is extremely resistant to oxidative stress and can survive inside phagocytic cells. In order to further our understanding of the oxidative stress response in , we characterized the superoxide dismutases (SODs) Cu,ZnSOD (Sod1) and MnSOD (Sod2). We found that Sod1 is the major contributor to total SOD activity and is present in cytoplasm, whereas Sod2 is a mitochondrial protein. Both SODs played a central role in the oxidative stress response but Sod1 was more important during fermentative growth and Sod2 during respiration and growth in non-fermentable carbon sources. Interestingly, cells lacking both SODs showed auxotrophy for lysine, a high rate of spontaneous mutation and reduced chronological lifespan. Thus, our study reveals that SODs play an important role in metabolism, lysine biosynthesis, DNA protection and aging in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000006
2015-02-01
2020-06-02
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/300.html?itemId=/content/journal/micro/10.1099/mic.0.000006&mimeType=html&fmt=ahah

References

  1. Atanasova R., Angoulvant A., Tefit M., Gay F., Guitard J., Mazier D., Fairhead C., Hennequin C.. 2013; A mouse model for Candida glabrata hematogenous disseminated infection starting from the gut: evaluation of strains with different adhesion properties. PLoS ONE8:e69664 [CrossRef][PubMed]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.. (editors) ( 2000; Current Protocols in Molecular Biology New York: John Wiley;
    [Google Scholar]
  3. Beauchamp C., Fridovich I.. 1971; Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem44:276–287 [CrossRef][PubMed]
    [Google Scholar]
  4. Biliński T., Krawiec Z., Liczmański A., Litwińska J.. 1985; Is hydroxyl radical generated by the Fenton reaction in vivo?. Biochem Biophys Res Commun130:533–539 [CrossRef][PubMed]
    [Google Scholar]
  5. Boeke J. D., LaCroute F., Fink G. R.. 1984; A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol Gen Genet197:345–346 [CrossRef][PubMed]
    [Google Scholar]
  6. Bonatto D.. 2007; A systems biology analysis of protein–protein interactions between yeast superoxide dismutases and DNA repair pathways. Free Radic Biol Med43:557–567 [CrossRef][PubMed]
    [Google Scholar]
  7. Bradford M. M.. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem72:248–254 [CrossRef][PubMed]
    [Google Scholar]
  8. Branzei D., Foiani M.. 2007; Interplay of replication checkpoints and repair proteins at stalled replication forks. DNA Repair (Amst)6:994–1003 [CrossRef][PubMed]
    [Google Scholar]
  9. Castano I., Kaur R., Pan S., Cregg R., Penas A. L., Guo N., Biery M. C., Craig N. L., Cormack B. P.. 2003; Tn7-based genome-wide random insertional mutagenesis of Candida glabrata . Genome Res13:905–915 [CrossRef][PubMed]
    [Google Scholar]
  10. Claros M. G., Vincens P.. 1996; Computational method to predict mitochondrially imported proteins and their targeting sequences. Eur J Biochem241:779–786 [CrossRef][PubMed]
    [Google Scholar]
  11. Cormack B. P., Ghori N., Falkow S.. 1999; An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science285:578–582 [CrossRef][PubMed]
    [Google Scholar]
  12. Cuéllar-Cruz M., Briones-Martin-del-Campo M., Cañas-Villamar I., Montalvo-Arredondo J., Riego-Ruiz L., Castaño I., De Las Peñas A.. 2008; High resistance to oxidative stress in the fungal pathogen Candida glabrata is mediated by a single catalase, Cta1p, and is controlled by the transcription factors Yap1p, Skn7p, Msn2p, and Msn4p. Eukaryot Cell7:814–825 [CrossRef][PubMed]
    [Google Scholar]
  13. Cuéllar-Cruz M., Castaño I., Arroyo-Helguera O., De Las Peñas A.. 2009; Oxidative stress response to menadione and cumene hydroperoxide in the opportunistic fungal pathogen Candida glabrata. . Mem Inst Oswaldo Cruz104:649–654 [CrossRef][PubMed]
    [Google Scholar]
  14. David S. S., O’Shea V. L., Kundu S.. 2007; Base-excision repair of oxidative DNA damage. Nature447:941–950 [CrossRef][PubMed]
    [Google Scholar]
  15. Dukan S., Nyström T.. 1999; Oxidative stress defense and deterioration of growth-arrested Escherichia coli cells. J Biol Chem274:26027–26032 [CrossRef][PubMed]
    [Google Scholar]
  16. Fabrizio P., Longo V. D.. 2003; The chronological life span of Saccharomyces cerevisiae . Aging Cell2:73–81 [CrossRef][PubMed]
    [Google Scholar]
  17. Farr S. B., D’Ari R., Touati D.. 1986; Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase. Proc Natl Acad Sci U S A83:8268–8272 [CrossRef][PubMed]
    [Google Scholar]
  18. Fazius F., Shelest E., Gebhardt P., Brock M.. 2012; The fungal α-aminoadipate pathway for lysine biosynthesis requires two enzymes of the aconitase family for the isomerization of homocitrate to homoisocitrate. Mol Microbiol86:1508–1530 [CrossRef][PubMed]
    [Google Scholar]
  19. Fink R. C., Scandalios J. G.. 2002; Molecular evolution and structure–function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Arch Biochem Biophys399:19–36 [CrossRef][PubMed]
    [Google Scholar]
  20. Flint D. H., Tuminello J. F., Emptage M. H.. 1993; The inactivation of Fe-S cluster containing hydro-lyases by superoxide. J Biol Chem268:22369–22376[PubMed]
    [Google Scholar]
  21. Fridovich I.. 1995; Superoxide radical and superoxide dismutases. Annu Rev Biochem64:97–112 [CrossRef][PubMed]
    [Google Scholar]
  22. Gangloff S. P., Marguet D., Lauquin G. J.. 1990; Molecular cloning of the yeast mitochondrial aconitase gene (ACO1) and evidence of a synergistic regulation of expression by glucose plus glutamate. Mol Cell Biol10:3551–3561[PubMed]
    [Google Scholar]
  23. Gralla E. B., Kosman D. J.. 1992; Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv Genet30:251–319 [CrossRef][PubMed]
    [Google Scholar]
  24. Gralla E. B., Valentine J. S.. 1991; Null mutants of Saccharomyces cerevisiae Cu,Zn superoxide dismutase: characterization and spontaneous mutation rates. J Bacteriol173:5918–5920[PubMed]
    [Google Scholar]
  25. Gutiérrez-Escobedo G., Orta-Zavalza E., Castaño I., De Las Peñas A.. 2013; Role of glutathione in the oxidative stress response in the fungal pathogen Candida glabrata . Curr Genet59:91–106 [CrossRef][PubMed]
    [Google Scholar]
  26. Hall B. M., Ma C. X., Liang P., Singh K. K.. 2009; Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria–Delbruck fluctuation analysis. Bioinformatics25:1564–1565 [CrossRef][PubMed]
    [Google Scholar]
  27. Hampsey M.. 1997; A review of phenotypes in Saccharomyces cerevisiae . Yeast13:1099–1133 [CrossRef][PubMed]
    [Google Scholar]
  28. Herker E., Jungwirth H., Lehmann K. A., Maldener C., Fröhlich K. U., Wissing S., Büttner S., Fehr M., Sigrist S., Madeo F.. 2004; Chronological aging leads to apoptosis in yeast. J Cell Biol164:501–507 [CrossRef][PubMed]
    [Google Scholar]
  29. Higgins D. G., Thompson J. D., Gibson T. J.. 1996; Using clustal for multiple sequence alignments. Methods Enzymol266:383–402 [CrossRef][PubMed]
    [Google Scholar]
  30. Huang M. E., Rio A. G. I., Nicolas A., Kolodner R. D.. 2003; A genomewide screen in Saccharomyces cerevisiae for genes that suppress the accumulation of mutations. Proc Natl Acad Sci U S A100:11529–11534[CrossRef]
    [Google Scholar]
  31. Hwang C. S., Rhie G. E., Oh J. H., Huh W. K., Yim H. S., Kang S. O.. 2002; Copper- and zinc-containing superoxide dismutase (Cu/ZnSOD) is required for the protection of Candida albicans against oxidative stresses and the expression of its full virulence. Microbiology148:3705–3713[PubMed]
    [Google Scholar]
  32. Jacobsen I. D., Grosse K., Berndt A., Hube B.. 2011; Pathogenesis of Candida albicans infections in the alternative chorio-allantoic membrane chicken embryo model resembles systemic murine infections. PLoS ONE6:e19741 [CrossRef][PubMed]
    [Google Scholar]
  33. Kaur R., Domergue R., Zupancic M. L., Cormack B. P.. 2005; A yeast by any other name: Candida glabrata and its interaction with the host. Curr Opin Microbiol8:378–384 [CrossRef][PubMed]
    [Google Scholar]
  34. Kaur R., Ma B., Cormack B. P.. 2007; A family of glycosylphosphatidylinositol-linked aspartyl proteases is required for virulence of Candida glabrata . Proc Natl Acad Sci U S A104:7628–7633 [CrossRef][PubMed]
    [Google Scholar]
  35. Keppler-Ross S., Douglas L., Konopka J. B., Dean N.. 2010; Recognition of yeast by murine macrophages requires mannan but not glucan. Eukaryot Cell9:1776–1787 [CrossRef][PubMed]
    [Google Scholar]
  36. Keyer K., Imlay J. A.. 1996; Superoxide accelerates DNA damage by elevating free-iron levels. Proc Natl Acad Sci U S A93:13635–13640 [CrossRef][PubMed]
    [Google Scholar]
  37. Kuwayama H., Obara S., Morio T., Katoh M., Urushihara H., Tanaka Y.. 2002; PCR-mediated generation of a gene disruption construct without the use of DNA ligase and plasmid vectors. Nucleic Acids Res30:e2 [CrossRef][PubMed]
    [Google Scholar]
  38. Kwon E. S., Jeong J. H., Roe J. H.. 2006; Inactivation of homocitrate synthase causes lysine auxotrophy in copper/zinc-containing superoxide dismutase-deficient yeast Schizosaccharomyces pombe . J Biol Chem281:1345–1351 [CrossRef][PubMed]
    [Google Scholar]
  39. Lang G. I., Murray A. W.. 2008; Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae . Genetics178:67–82 [CrossRef][PubMed]
    [Google Scholar]
  40. Langford P. R., Sansone A., Valenti P., Battistoni A., Kroll J. S.. 2002; Bacterial superoxide dismutase and virulence. Methods Enzymol349:155–166 [CrossRef][PubMed]
    [Google Scholar]
  41. Li Y., Huang T. T., Carlson E. J., Melov S., Ursell P. C., Olson J. L., Noble L. J., Yoshimura M. P., Berger C.. & other authors ( 1995; Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet11:376–381 [CrossRef][PubMed]
    [Google Scholar]
  42. Liochev S. I., Fridovich I.. 1999; Superoxide and iron: partners in crime. IUBMB Life48:157–161 [CrossRef][PubMed]
    [Google Scholar]
  43. Longo V. D., Gralla E. B., Valentine J. S.. 1996; Superoxide dismutase activity is essential for stationary phase survival in Saccharomyces cerevisiae. Mitochondrial production of toxic oxygen species in vivo . J Biol Chem271:12275–12280 [CrossRef][PubMed]
    [Google Scholar]
  44. Longo V. D., Liou L. L., Valentine J. S., Gralla E. B.. 1999; Mitochondrial superoxide decreases yeast survival in stationary phase. Arch Biochem Biophys365:131–142 [CrossRef][PubMed]
    [Google Scholar]
  45. Miller R. A., Britigan B. E.. 1997; Role of oxidants in microbial pathophysiology. Clin Microbiol Rev10:1–18[PubMed]
    [Google Scholar]
  46. Murakami C. J., Burtner C. R., Kennedy B. K., Kaeberlein M.. 2008; A method for high-throughput quantitative analysis of yeast chronological life span. J Gerontol A Biol Sci Med Sci63:113–121 [CrossRef][PubMed]
    [Google Scholar]
  47. Mutoh N., Nakagawa C. W., Yamada K.. 2002; Characterization of Cu, Zn-superoxide dismutase-deficient mutant of fission yeast Schizosaccharomyces pombe . Curr Genet41:82–88 [CrossRef][PubMed]
    [Google Scholar]
  48. Narasipura S. D., Ault J. G., Behr M. J., Chaturvedi V., Chaturvedi S.. 2003; Characterization of Cu,Zn superoxide dismutase (SOD1) gene knock-out mutant of Cryptococcus neoformans var. gattii: role in biology and virulence. Mol Microbiol47:1681–1694 [CrossRef][PubMed]
    [Google Scholar]
  49. Narasipura S. D., Chaturvedi V., Chaturvedi S.. 2005; Characterization of Cryptococcus neoformans variety gattii SOD2 reveals distinct roles of the two superoxide dismutases in fungal biology and virulence. Mol Microbiol55:1782–1800 [CrossRef][PubMed]
    [Google Scholar]
  50. Orta-Zavalza E., Guerrero-Serrano G., Gutiérrez-Escobedo G., Cañas-Villamar I., Juárez-Cepeda J., Castaño I., De Las Peñas A.. 2013; Local silencing controls the oxidative stress response and the multidrug resistance in Candida glabrata . Mol Microbiol88:1135–1148 [CrossRef][PubMed]
    [Google Scholar]
  51. Pfaller M. A., Diekema D. J.. 2007; Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev20:133–163 [CrossRef][PubMed]
    [Google Scholar]
  52. Rasmussen A. K., Chatterjee A., Rasmussen L. J., Singh K. K.. 2003; Mitochondria-mediated nuclear mutator phenotype in Saccharomyces cerevisiae . Nucleic Acids Res31:3909–3917 [CrossRef][PubMed]
    [Google Scholar]
  53. Roetzer A., Klopf E., Gratz N., Marcet-Houben M., Hiller E., Rupp S., Gabaldón T., Kovarik P., Schüller C.. 2011; Regulation of Candida glabrata oxidative stress resistance is adapted to host environment. FEBS Lett585:319–327 [CrossRef][PubMed]
    [Google Scholar]
  54. Seider K., Brunke S., Schild L., Jablonowski N., Wilson D., Majer O., Barz D., Haas A., Kuchler K.. & other authors ( 2011; The facultative intracellular pathogen Candida glabrata subverts macrophage cytokine production and phagolysosome maturation. J Immunol187:3072–3086 [CrossRef][PubMed]
    [Google Scholar]
  55. Sherman F., Fink G. R., Hicks J. B.. 1986; Methods in Yeast Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  56. Slupphaug G., Kavli B., Krokan H. E.. 2003; The interacting pathways for prevention and repair of oxidative DNA damage. Mutat Res531:231–251 [CrossRef][PubMed]
    [Google Scholar]
  57. Smith M. W., Doolittle R. F.. 1992; A comparison of evolutionary rates of the two major kinds of superoxide dismutase. J Mol Evol34:175–184 [CrossRef][PubMed]
    [Google Scholar]
  58. Srinivasan C., Liba A., Imlay J. A., Valentine J. S., Gralla E. B.. 2000; Yeast lacking superoxide dismutase(s) show elevated levels of “free iron” as measured by whole cell electron paramagnetic resonance. J Biol Chem275:29187–29192 [CrossRef][PubMed]
    [Google Scholar]
  59. Sturtz L. A., Diekert K., Jensen L. T., Lill R., Culotta V. C.. 2001; A fraction of yeast Cu,Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem276:38084–38089[PubMed]
    [Google Scholar]
  60. Toyn J. H., Gunyuzlu P. L., White W. H., Thompson L. A., Hollis G. F.. 2000; A counterselection for the tryptophan pathway in yeast: 5-fluoroanthranilic acid resistance. Yeast16:553–560 [CrossRef][PubMed]
    [Google Scholar]
  61. Wallace M. A., Liou L. L., Martins J., Clement M. H., Bailey S., Longo V. D., Valentine J. S., Gralla E. B.. 2004; Superoxide inhibits 4Fe-4S cluster enzymes involved in amino acid biosynthesis. Cross-compartment protection by CuZn-superoxide dismutase. J Biol Chem279:32055–32062 [CrossRef][PubMed]
    [Google Scholar]
  62. Weisiger R. A., Fridovich I.. 1973; Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem248:4793–4796[PubMed]
    [Google Scholar]
  63. Xiao W., Chow B. L., Rathgeber L.. 1996; The repair of DNA methylation damage in Saccharomyces cerevisiae . Curr Genet30:461–468 [CrossRef][PubMed]
    [Google Scholar]
  64. Youseff B. H., Holbrook E. D., Smolnycki K. A., Rappleye C. A.. 2012; Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog8:e1002713 [CrossRef][PubMed]
    [Google Scholar]
  65. Zordan R. E., Ren Y., Pan S. J., Rotondo G., De Las Peñas A., Iluore J., Cormack B. P.. 2013; Expression plasmids for use in Candida glabrata. . G3 (Bethesda)3:1675–1686 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000006
Loading
/content/journal/micro/10.1099/mic.0.000006
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error