Characterization and evolution of CRISPR-Cas systems Free

Abstract

Prokaryotic CRISPR-Cas (clustered regularly interspaced short palindromic repeats and RISPR-sociated genes) systems provide adaptive immunity from invasive genetic elements and encompass three essential features: (i) genes, (ii) a CRISPR array composed of spacers and direct repeats and (iii) an AT-rich leader sequence upstream of the array. We performed in-depth sequence analysis of the CRISPR-Cas systems in >600 , representing four clinically prevalent serovars. Each CRISPR-Cas feature is extremely conserved in the and the CRISPR1 locus is more highly conserved than CRISPR2. Array composition is serovar-specific, although no convincing evidence of recent spacer acquisition against exogenous nucleic acids exists. Only 12 % of spacers match phage and plasmid sequences and self-targeting spacers are associated with direct repeat variants. High nucleotide identity (>99.9 %) exists across the operon among isolates of a single serovar and in some cases this conservation extends across divergent serovars. These observations reflect historical CRISPR-Cas immune activity, showing that this locus has ceased undergoing adaptive events. Intriguingly, the high level of conservation across divergent serovars shows that the genetic integrity of these inactive loci is maintained over time, contrasting with the canonical view that inactive CRISPR loci degenerate over time. This thorough characterization of CRISPR-Cas systems presents new insights into CRISPR evolution, particularly with respect to gene conservation, leader sequences, organization of direct repeats and protospacer matches. Collectively, our data suggest that CRISPR-Cas systems are no longer immunogenic; rather, their impressive conservation indicates they may have an alternative function in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000005
2015-02-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/374.html?itemId=/content/journal/micro/10.1099/mic.0.000005&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [View Article][PubMed]
    [Google Scholar]
  2. Babu M., Beloglazova N., Flick R., Graham C., Skarina T., Nocek B., Gagarinova A., Pogoutse O., Brown G. & other authors ( 2011; A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502 [View Article][PubMed]
    [Google Scholar]
  3. Barrangou R., Fremaux C., Deveau H., Richards M., Boyaval P., Moineau S., Romero D. A., Horvath P. 2007; CRISPR provides acquired resistance against viruses in prokaryotes. Science 315:1709–1712 [View Article][PubMed]
    [Google Scholar]
  4. Bhaya D., Davison M., Barrangou R. 2011; CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annu Rev Genet 45:273–297 [View Article][PubMed]
    [Google Scholar]
  5. Biswas A., Gagnon J. N., Brouns S. J., Fineran P. C., Brown C. M. 2013; CRISPRTarget: bioinformatic prediction and analysis of crRNA targets. RNA Biol 10:817–827 [View Article][PubMed]
    [Google Scholar]
  6. Bolotin A., Quinquis B., Sorokin A., Ehrlich S. D. 2005; Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology 151:2551–2561 [View Article][PubMed]
    [Google Scholar]
  7. Bondy-Denomy J., Davidson A. R. 2014; To acquire or resist: the complex biological effects of CRISPR-Cas systems. Trends Microbiol 22:218–225 [View Article][PubMed]
    [Google Scholar]
  8. Brouns S. J. J., Jore M. M., Lundgren M., Westra E. R., Slijkhuis R. J. H., Snijders A. P. L., Dickman M. J., Makarova K. S., Koonin E. V., van der Oost J. 2008; Small CRISPR RNAs guide antiviral defense in prokaryotes. Science 321:960–964 [View Article][PubMed]
    [Google Scholar]
  9. Cady K. C., White A. S., Hammond J. H., Abendroth M. D., Karthikeyan R. S., Lalitha P., Zegans M. E., O’Toole G. A. 2011; Prevalence, conservation and functional analysis of Yersinia and Escherichia CRISPR regions in clinical Pseudomonas aeruginosa isolates. Microbiology 157:430–437 [View Article][PubMed]
    [Google Scholar]
  10. Centers for Disease Control & Prevention . ( 2011 National Salmonella Surveillance Annual Report 2011 Atlanta, GA: CDC;
    [Google Scholar]
  11. Deltcheva E., Chylinski K., Sharma C. M., Gonzales K., Chao Y., Pirzada Z. A., Eckert M. R., Vogel J., Charpentier E. 2011; CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471:602–607 [View Article][PubMed]
    [Google Scholar]
  12. Deveau H., Barrangou R., Garneau J. E., Labonté J., Fremaux C., Boyaval P., Romero D. A., Horvath P., Moineau S. 2008; Phage response to CRISPR-encoded resistance in Streptococcus thermophilus . J Bacteriol 190:1390–1400 [View Article][PubMed]
    [Google Scholar]
  13. Díez-Villaseñor C., Almendros C., García-Martínez J., Mojica F. J. M. 2010; Diversity of CRISPR loci in Escherichia coli . Microbiology 156:1351–1361 [View Article][PubMed]
    [Google Scholar]
  14. DiMarzio M. J., Shariat N., Kariyawasam S., Barrangou R., Dudley E. G. 2013; Antibiotic resistance in Salmonella Typhimurium associates with CRISPR sequence type. Antimicrob Agents Chemother 57:4282–4289 [View Article][PubMed]
    [Google Scholar]
  15. Fabre L., Zhang J., Guigon G., Le Hello S., Guibert V., Accou-Demartin M., de Romans S., Lim C., Roux C. & other authors ( 2012; CRISPR typing and subtyping for improved laboratory surveillance of Salmonella infections. PLoS ONE 7:e36995 [View Article][PubMed]
    [Google Scholar]
  16. Fricke W. F., Mammel M. K., McDermott P. F., Tartera C., White D. G., Leclerc J. E., Ravel J., Cebula T. A. 2011; Comparative genomics of 28 Salmonella enterica isolates: evidence for CRISPR-mediated adaptive sublineage evolution. J Bacteriol 193:3556–3568 [View Article][PubMed]
    [Google Scholar]
  17. Garneau J. E., Dupuis M. È., Villion M., Romero D. A., Barrangou R., Boyaval P., Fremaux C., Horvath P., Magadán A. H., Moineau S. 2010; The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468:67–71 [View Article][PubMed]
    [Google Scholar]
  18. Goldberg G. W., Jiang W., Bikard D., Marraffini L. A. 2014; Conditional tolerance of temperate phages via transcription-dependent CRISPR-Cas targeting. Nature 514:633–637 [View Article][PubMed]
    [Google Scholar]
  19. Grimont P., Weill F. 2007 Antigenic Formulae of the Salmonella Serovars, 9th edn. Geneva: WHO;
    [Google Scholar]
  20. Grissa I., Vergnaud G., Pourcel C. 2007; The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics 8:172 [View Article][PubMed]
    [Google Scholar]
  21. Gunderson F. F., Cianciotto N. P. 2013; The CRISPR-associated gene cas2 of Legionella pneumophila is required for intracellular infection of amoebae. mBio 4:e00074-13 [CrossRef]
    [Google Scholar]
  22. Hale C., Kleppe K., Terns R. M., Terns M. P. 2008; Prokaryotic silencing (psi)RNAs in Pyrococcus furiosus . RNA 14:2572–2579 [View Article][PubMed]
    [Google Scholar]
  23. Hale C. R., Zhao P., Olson S., Duff M. O., Graveley B. R., Wells L., Terns R. M., Terns M. P. 2009; RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell 139:945–956 [View Article][PubMed]
    [Google Scholar]
  24. Hargreaves K. R., Flores C. O., Lawley T. D., Clokie M. R. 2014; Abundant and diverse clustered regularly interspaced short palindromic repeat spacers in Clostridium difficile strains and prophages target multiple phage types within this pathogen. MBio 5:e01045-13 [View Article][PubMed]
    [Google Scholar]
  25. Horvath P., Romero D. A., Coûté-Monvoisin A.-C., Richards M., Deveau H., Moineau S., Boyaval P., Fremaux C., Barrangou R. 2008; Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus . J Bacteriol 190:1401–1412 [View Article][PubMed]
    [Google Scholar]
  26. Jansen R., Embden J. D., Gaastra W., Schouls L. M. 2002; Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43:1565–1575 [View Article][PubMed]
    [Google Scholar]
  27. Lillestøl R. K., Redder P., Garrett R. A., Brügger K. 2006; A putative viral defence mechanism in archaeal cells. Archaea 2:59–72 [View Article][PubMed]
    [Google Scholar]
  28. Liu F., Barrangou R., Gerner-Smidt P., Ribot E. M., Knabel S. J., Dudley E. G. 2011a; Novel virulence gene and clustered regularly interspaced short palindromic repeat (CRISPR) multilocus sequence typing scheme for subtyping of the major serovars of Salmonella enterica subsp. enterica . Appl Environ Microbiol 77:1946–1956 [View Article][PubMed]
    [Google Scholar]
  29. Liu F., Kariyawasam S., Jayarao B. M., Barrangou R., Gerner-Smidt P., Ribot E. M., Knabel S. J., Dudley E. G. 2011b; Subtyping Salmonella enterica serovar enteritidis isolates from different sources by using sequence typing based on virulence genes and clustered regularly interspaced short palindromic repeats (CRISPRs). Appl Environ Microbiol 77:4520–4526 [View Article][PubMed]
    [Google Scholar]
  30. Makarova K. S., Haft D. H., Barrangou R., Brouns S. J. J., Charpentier E., Horvath P., Moineau S., Mojica F. J., Wolf Y. I. & other authors ( 2011; Evolution and classification of the CRISPR-Cas systems. Nat Rev Microbiol 9:467–477 [View Article][PubMed]
    [Google Scholar]
  31. Medina-Aparicio L., Rebollar-Flores J. E., Gallego-Hernández A. L., Vázquez A., Olvera L., Gutiérrez-Ríos R. M., Calva E., Hernández-Lucas I. 2011; The CRISPR/Cas immune system is an operon regulated by LeuO, H-NS, and leucine-responsive regulatory protein in Salmonella enterica serovar Typhi. J Bacteriol 193:2396–2407 [View Article][PubMed]
    [Google Scholar]
  32. Mojica F. J., Díez-Villaseñor C., García-Martínez J., Soria E. 2005; Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements. J Mol Evol 60:174–182 [View Article][PubMed]
    [Google Scholar]
  33. Pettengill J. B., Timme R. E., Barrangou R., Toro M., Allard M. W., Strain E., Musser S. M., Brown E. W. 2014; The evolutionary history and diagnostic utility of the CRISPR-Cas system within Salmonella enterica ssp. enterica . PeerJ 2:e340 [View Article][PubMed]
    [Google Scholar]
  34. Pourcel C., Salvignol G., Vergnaud G. 2005; CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663 [View Article][PubMed]
    [Google Scholar]
  35. Pul Ü., Wurm R., Arslan Z., Geißen R., Hofmann N., Wagner R. 2010; Identification and characterization of E. coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol 75:1495–1512 [View Article][PubMed]
    [Google Scholar]
  36. Riehm J. M., Vergnaud G., Kiefer D., Damdindorj T., Dashdavaa O., Khurelsukh T., Zöller L., Wölfel R., Le Flèche P., Scholz H. C. 2012; Yersinia pestis lineages in Mongolia. PLoS ONE 7:e30624 [View Article][PubMed]
    [Google Scholar]
  37. Sampson T. R., Saroj S. D., Llewellyn A. C., Tzeng Y.-L., Weiss D. S. 2013; A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–257 [View Article][PubMed]
    [Google Scholar]
  38. Sangal V., Harbottle H., Mazzoni C. J., Helmuth R., Guerra B., Didelot X., Paglietti B., Rabsch W., Brisse S. & other authors ( 2010; Evolution and population structure of Salmonella enterica serovar Newport. J Bacteriol 192:6465–6476 [View Article][PubMed]
    [Google Scholar]
  39. Scallan E., Hoekstra R. M., Angulo F. J., Tauxe R. V., Widdowson M.-A., Roy S. L., Jones J. L., Griffin P. M. 2011; Foodborne illness acquired in the United States–major pathogens. Emerg Infect Dis 17:7–15 [View Article][PubMed]
    [Google Scholar]
  40. Shariat N., DiMarzio M. J., Yin S., Dettinger L., Sandt C. H., Lute J. R., Barrangou R., Dudley E. G. 2013a; The combination of CRISPR-MVLST and PFGE provides increased discriminatory power for differentiating human clinical isolates of Salmonella enterica subsp. enterica serovar Enteritidis. Food Microbiol 34:164–173 [View Article][PubMed]
    [Google Scholar]
  41. Shariat N., Kirchner M. K., Sandt C. H., Trees E., Barrangou R., Dudley E. G. 2013b; Subtyping of Salmonella enterica serovar Newport outbreak isolates by CRISPR-MVLST and determination of the relationship between CRISPR-MVLST and PFGE results. J Clin Microbiol 51:2328–2336 [View Article][PubMed]
    [Google Scholar]
  42. Shariat N., Sandt C. H., DiMarzio M. J., Barrangou R., Dudley E. G. 2013c). CRISPR-MVLST subtyping of Salmonella enterica subsp. enterica serovars Typhimurium and Heidelberg and application in identifying outbreak isolates. BMC Microbiol 13:254 [CrossRef]
    [Google Scholar]
  43. Stern A., Keren L., Wurtzel O., Amitai G., Sorek R. 2010; Self-targeting by CRISPR: gene regulation or autoimmunity?. Trends Genet 26:335–340 [View Article][PubMed]
    [Google Scholar]
  44. Timme R. E., Pettengill J. B., Allard M. W., Strain E., Barrangou R., Wehnes C., Van Kessel J. S., Karns J. S., Musser S. M., Brown E. W. 2013; Phylogenetic diversity of the enteric pathogen Salmonella enterica subsp. enterica inferred from genome-wide reference-free SNP characters. Genome Biol Evol 5:2109–2123 [View Article][PubMed]
    [Google Scholar]
  45. Touchon M., Rocha E. P. C. 2010; The small, slow and specialized CRISPR and anti-CRISPR of Escherichia and Salmonella . PLoS ONE 5:e11126 [View Article][PubMed]
    [Google Scholar]
  46. Touchon M., Charpentier S., Clermont O., Rocha E. P., Denamur E., Branger C. 2011; CRISPR distribution within the Escherichia coli species is not suggestive of immunity-associated diversifying selection. J Bacteriol 193:2460–2467 [View Article][PubMed]
    [Google Scholar]
  47. Tyson G. W., Banfield J. F. 2008; Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ Microbiol 10:200–207[PubMed]
    [Google Scholar]
  48. Veesenmeyer J. L., Andersen A. W., Lu X., Hussa E. A., Murfin K. E., Chaston J. M., Dillman A. R., Wassarman K. M., Sternberg P. W., Goodrich-Blair H. 2014; NilD CRISPR RNA contributes to Xenorhabdus nematophila colonization of symbiotic host nematodes. Mol Microbiol 93:1026–1042 [View Article][PubMed]
    [Google Scholar]
  49. Westra E. R., Pul Ü., Heidrich N., Jore M. M., Lundgren M., Stratmann T., Wurm R., Raine A., Mescher M. & other authors ( 2010; H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol 77:1380–1393 [View Article][PubMed]
    [Google Scholar]
  50. Westra E. R., Buckling A., Fineran P. C. 2014; CRISPR-Cas systems: beyond adaptive immunity. Nat Rev Microbiol 12:317–326 [View Article][PubMed]
    [Google Scholar]
  51. Wiedenheft B., Sternberg S. H., Doudna J. A. 2012; RNA-guided genetic silencing systems in bacteria and archaea. Nature 482:331–338 [View Article][PubMed]
    [Google Scholar]
  52. Yosef I., Goren M. G., Qimron U. 2012; Proteins and DNA elements essential for the CRISPR adaptation process in Escherichia coli . Nucleic Acids Res 40:5569–5576 [View Article][PubMed]
    [Google Scholar]
  53. Zegans M. E., Wagner J. C., Cady K. C., Murphy D. M., Hammond J. H., O’Toole G. A. 2009; Interaction between bacteriophage DMS3 and host CRISPR region inhibits group behaviors of Pseudomonas aeruginosa . J Bacteriol 191:210–219 [View Article][PubMed]
    [Google Scholar]
  54. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S. 2011; PHAST: a fast phage search tool. Nucleic Acids Res 39:Suppl 2W347–W352 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000005
Loading
/content/journal/micro/10.1099/mic.0.000005
Loading

Data & Media loading...

Supplements

Supplementary Data

PDF

Most cited Most Cited RSS feed