1887

Abstract

A three year survey on the dominant yeast populations in samples of air, must and wine in different vineyards and cellars of two northern Italian vine-growing territories (six sites in Franciacorta and eight sites in Oltrepò Pavese areas) was carried out. A total of 505 isolates were ascribed to 31 different species by RFLP analysis of the ITS1–5.8SrRNA–ITS2 region and partial sequence analysis of the 26S rRNA gene. The most commonly found species were (frequency,  = 58.7 %; incidence,  = 53.5 %), ( = 14.3 %;  = 5.3 %), ( = 11.1 %;  = 5.0 %) and ( = 10.3 %;  = 3.8 %). Among 270 new isolates, 156 (57.8 %) revealed a different genetic pattern through polymorphism analysis of the interdelta regions by capillary electrophoresis, while 47 isolates (17.4 %) were clones of starter cultures. By considering the Shannon–Wiener index and results of principal component analysis (PCA) analyses, the year of isolation (vintage) proved to be a factor that significantly affected the biodiversity of the yeast species, whereas the geographical site () was not. Seventy-five per cent of isolates gathered in a unique cluster at a similarity level of 82 %, while the remaining 25 % were separated into minor groups without any evident relationship between δ-PCR profile and territory, year or source of isolation. However, in six cases a similar strain appeared at the harvesting time both in Franciacorta and Oltrepò Pavese areas, whereas surprisingly no strain was reisolated in the same vineyard or cellar for consecutive years.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000004
2015-02-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/362.html?itemId=/content/journal/micro/10.1099/mic.0.000004&mimeType=html&fmt=ahah

References

  1. Barata A., Malfeito-Ferreira M., Loureiro V.. ( 2012;). The microbial ecology of wine grape berries. . Int J Food Microbiol 153:, 243–259. [CrossRef][PubMed]
    [Google Scholar]
  2. Beltran G., Torija M. J., Novo M., Ferrer N., Poblet M., Guillamón J. M., Rozès N., Mas A.. ( 2002;). Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. . Syst Appl Microbiol 25:, 287–293. [CrossRef][PubMed]
    [Google Scholar]
  3. Blanco P., Orriols I., Losada A.. ( 2011;). Survival of commercial yeasts in the winery environment and their prevalence during spontaneous fermentations. . J Ind Microbiol Biotechnol 38:, 235–239. [CrossRef][PubMed]
    [Google Scholar]
  4. Bokulich N. A., Ohta M., Richardson P. M., Mills D. A.. ( 2013;). Monitoring seasonal changes in winery-resident microbiota. . PLoS ONE 8:, e66437. [CrossRef][PubMed]
    [Google Scholar]
  5. Ciani M., Mannazzu I., Marinangeli P., Clementi F., Martini A.. ( 2004;). Contribution of winery-resident Saccharomyces cerevisiae strains to spontaneous grape must fermentation. . Antonie van Leeuwenhoek 85:, 159–164. [CrossRef][PubMed]
    [Google Scholar]
  6. Cordero-Bueso G., Arroyo T., Serrano A., Tello J., Aporta I., Vélez M. D., Valero E.. ( 2011a;). Influence of the farming system and vine variety on yeast communities associated with grape berries. . Int J Food Microbiol 145:, 132–139. [CrossRef][PubMed]
    [Google Scholar]
  7. Cordero-Bueso G., Arroyo T., Serrano A., Valero E.. ( 2011b;). Remanence and survival of commercial yeast in different ecological niches of the vineyard. . FEMS Microbiol Ecol 77:, 429–437. [CrossRef][PubMed]
    [Google Scholar]
  8. Csoma H., Zakany N., Capece A., Romano P., Sipiczki M.. ( 2010;). Biological diversity of Saccharomyces yeasts of spontaneously fermenting wines in four wine regions: comparative genotypic and phenotypic analysis. . Int J Food Microbiol 140:, 239–248. [CrossRef][PubMed]
    [Google Scholar]
  9. de Melo Pereira G. V., Ramos C. L., Galvão C., Souza Dias E., Schwan R. F.. ( 2010;). Use of specific PCR primers to identify three important industrial species of Saccharomyces genus: Saccharomyces cerevisiae, Saccharomyces bayanus and Saccharomyces pastorianus. . Lett Appl Microbiol 51:, 131–137.[PubMed]
    [Google Scholar]
  10. Demuyter C., Lollier M., Legras J.-L., Le Jeune C.. ( 2004;). Predominance of Saccharomyces uvarum during spontaneous alcoholic fermentation, for three consecutive years, in an Alsatian winery. . J Appl Microbiol 97:, 1140–1148. [CrossRef][PubMed]
    [Google Scholar]
  11. Di Maio S., Polizzotto G., Di Gangi E., Foresta G., Genna G., Verzera A., Scacco A., Amore G., Oliva D.. ( 2012;). Biodiversity of indigenous Saccharomyces populations from old wineries of south-eastern Sicily (Italy): preservation and economic potential. . PLoS ONE 7:, e30428. [CrossRef][PubMed]
    [Google Scholar]
  12. Esteve-Zarzoso B., Belloch C., Uruburu F., Querol A.. ( 1999;). Identification of yeasts by RFLP analysis of the 5.8S rRNA gene and the two ribosomal internal transcribed spacers. . Int J Syst Bacteriol 49:, 329–337. [CrossRef][PubMed]
    [Google Scholar]
  13. Evanno G., Regnaut S., Goudet J.. ( 2005;). Detecting the number of clusters of individuals using the software structure: a simulation study. . Mol Ecol 14:, 2611–2620. [CrossRef][PubMed]
    [Google Scholar]
  14. Fernández-Espinar M. T., López V., Ramón D., Bartra E., Querol A.. ( 2001;). Study of the authenticity of commercial wine yeast strains by molecular techniques. . Int J Food Microbiol 70:, 1–10. [CrossRef][PubMed]
    [Google Scholar]
  15. Furdíkova K., Makysova K., Durcanska K.. ( 2014;). Influence of yeast strain on aromatic profile of Gewürztraminer wine. . LWT - Food Sci Technol 59:, 256–262. [CrossRef]
    [Google Scholar]
  16. Garijo P., López R., Santamaría P., Ocon E., Olarte C., Sanz S., Gutiérrez A. R.. ( 2011;). Presence of enological microorganisms in the grapes and the air of a vineyard during the ripening period. . Eur Food Res Technol 233:, 359–365. [CrossRef]
    [Google Scholar]
  17. Giudici P., Solieri L., Pulvirenti A. M., Cassanelli S.. ( 2005;). Strategies and perspectives for genetic improvement of wine yeasts. . Appl Microbiol Biotechnol 66:, 622–628. [CrossRef][PubMed]
    [Google Scholar]
  18. International Organization of Vine and Wine (2010). Definition of vitivinicultural “terroir”. OIV/VITI 333/2010 Resolution, Tbilisi, 25th June 2010.
  19. Legras J.-L., Karst F.. ( 2003;). Optimisation of interdelta analysis for Saccharomyces cerevisiae strain characterisation. . FEMS Microbiol Lett 221:, 249–255. [CrossRef][PubMed]
    [Google Scholar]
  20. Mannazzu I., Clementi F., Ciani M.. ( 2002;). Strategies and criteria for the isolation and selection of autochthonous starters. . In Biodiversity and Biotechnology of Wine Yeasts, pp. 19–33. Edited by Ciani M... Kerala:: Research Signpost;.
    [Google Scholar]
  21. Martínez C., Gac S., Lavín A., Ganga M.. ( 2004;). Genomic characterization of Saccharomyces cerevisiae strains isolated from wine-producing areas in South America. . J Appl Microbiol 96:, 1161–1168. [CrossRef][PubMed]
    [Google Scholar]
  22. Milanović V., Comitini F., Ciani M.. ( 2013;). Grape berry yeast communities: influence of fungicide treatments. . Int J Food Microbiol 161:, 240–246. [CrossRef][PubMed]
    [Google Scholar]
  23. Peakall R., Smouse P. E.. ( 2006;). genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. . Mol Ecol Notes 6:, 288–295. [CrossRef]
    [Google Scholar]
  24. Pfliegler W. P., Horváth E., Kállai Z., Sipiczki M.. ( 2014;). Diversity of Candida zemplinina isolates inferred from RAPD, micro/minisatellite and physiological analysis. . Microbiol Res 169:, 402–410. [CrossRef][PubMed]
    [Google Scholar]
  25. Pretorius I. S.. ( 2000;). Tailoring wine yeast for the new millennium: novel approaches to the ancient art of winemaking. . Yeast 16:, 675–729. [CrossRef][PubMed]
    [Google Scholar]
  26. Price A. L., Patterson N. J., Plenge R. M., Weinblatt M. E., Shadick N. A., Reich D.. ( 2006;). Principal components analysis corrects for stratification in genome-wide association studies. . Nat Genet 38:, 904–909. [CrossRef][PubMed]
    [Google Scholar]
  27. Pritchard J. K., Stephens M., Donnelly P.. ( 2000;). Inference of population structure using multilocus genotype data. . Genetics 155:, 945–959.[PubMed]
    [Google Scholar]
  28. Rodríguez-Palero M. J., Fierro-Risco J., Codón A. C., Benítez T., Valcárcel M. J.. ( 2013;). Selection of an autochthonous Saccharomyces strain starter for alcoholic fermentation of Sherry base wines. . J Ind Microbiol Biotechnol 40:, 613–623. [CrossRef][PubMed]
    [Google Scholar]
  29. Romano P., Fiore C., Paraggio M., Caruso M., Capece A.. ( 2003a;). Function of yeast species and strains in wine flavour. . Int J Food Microbiol 86:, 169–180. [CrossRef][PubMed]
    [Google Scholar]
  30. Romano P., Caruso M., Capece A., Lipani G., Paraggio M., Fiore C.. ( 2003b;). Metabolic diversity of Saccharomyces cerevisiae strains from spontaneously fermented grape musts. . World J Microbiol Biotechnol 19:, 311–315. [CrossRef]
    [Google Scholar]
  31. Santamaria P., López R., López E., Garijo P., Gutiérrez A. R.. ( 2008;). Permanence of yeast inocula in the winery ecosystem and presence in spontaneous fermentations. . Eur Food Res Technol 227:, 1563–1567. [CrossRef]
    [Google Scholar]
  32. Schuller D., Casal M.. ( 2007;). The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis. . Antonie van Leeuwenhoek 91:, 137–150. [CrossRef][PubMed]
    [Google Scholar]
  33. Settanni L., Sannino C., Francesca N., Guarcello R., Moschetti G.. ( 2012;). Yeast ecology of vineyards within Marsala wine area (western Sicily) in two consecutive vintages and selection of autochthonous Saccharomyces cerevisiae strains. . J Biosci Bioeng 114:, 606–614. [CrossRef][PubMed]
    [Google Scholar]
  34. Spírek M., Yang J., Groth C., Petersen R. F., Langkjaer R. B., Naumova E. S., Sulo P., Naumov G. I., Piskur J.. ( 2003;). High-rate evolution of Saccharomyces sensu lato chromosomes. . FEMS Yeast Res 3:, 363–373. [CrossRef][PubMed]
    [Google Scholar]
  35. Stefanini I., Dapporto L., Legras J.-L., Calabretta A., Di Paola M., De Filippo C., Viola R., Capretti P., Polsinelli M.. & other authors ( 2012;). Role of social wasps in Saccharomyces cerevisiae ecology and evolution. . Proc Natl Acad Sci U S A 109:, 13398–13403. [CrossRef][PubMed]
    [Google Scholar]
  36. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.. ( 2011;). mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. . Mol Biol Evol 28:, 2731–2739. [CrossRef][PubMed]
    [Google Scholar]
  37. Torija M. J., Rozès N., Poblet M., Guillamón J. M., Mas A.. ( 2001;). Yeast population dynamics in spontaneous fermentations: comparison between two different wine-producing areas over a period of three years. . Antonie van Leeuwenhoek 79:, 345–352. [CrossRef][PubMed]
    [Google Scholar]
  38. Tosi E., Azzolini M., Guzzo F., Zapparoli G.. ( 2009;). Evidence of different fermentation behaviours of two indigenous strains of Saccharomyces cerevisiae and Saccharomyces uvarum isolated from Amarone wine. . J Appl Microbiol 107:, 210–218. [CrossRef][PubMed]
    [Google Scholar]
  39. Tristezza M., Gerardi C., Logrieco A., Grieco F.. ( 2009;). An optimized protocol for the production of interdelta markers in Saccharomyces cerevisiae by using capillary electrophoresis. . J Microbiol Methods 78:, 286–291. [CrossRef][PubMed]
    [Google Scholar]
  40. Tristezza M., Vetrano C., Bleve G., Grieco F., Tufariello M., Quarta A., Mita G., Spano G., Grieco F.. ( 2012;). Autochthonous fermentation starters for the industrial production of Negroamaro wines. . J Ind Microbiol Biotechnol 39:, 81–92. [CrossRef][PubMed]
    [Google Scholar]
  41. Tristezza M., Vetrano C., Bleve G., Spano G., Capozzi V., Logrieco A., Mita G., Grieco F.. ( 2013;). Biodiversity and safety aspects of yeast strains characterized from vineyards and spontaneous fermentations in the Apulia Region, Italy. . Food Microbiol 36:, 335–342. [CrossRef][PubMed]
    [Google Scholar]
  42. Valero E., Schuller D., Cambon B., Casal M., Dequin S.. ( 2005;). Dissemination and survival of commercial wine yeast in the vineyard: a large-scale, three-years study. . FEMS Yeast Res 5:, 959–969. [CrossRef][PubMed]
    [Google Scholar]
  43. Versavaud A., Courcoux P., Roulland C., Dulau L., Hallet J.-N.. ( 1995;). Genetic diversity and geographical distribution of wild Saccharomyces cerevisiae strains from the wine-producing area of Charentes, France. . Appl Environ Microbiol 61:, 3521–3529.[PubMed]
    [Google Scholar]
  44. Vigentini I., Fracassetti D., Picozzi C., Foschino R.. ( 2009;). Polymorphisms of Saccharomyces cerevisiae genes involved in wine production. . Curr Microbiol 58:, 211–218. [CrossRef][PubMed]
    [Google Scholar]
  45. Vigentini I., De Lorenzis G., Picozzi C., Imazio S., Merico A., Galafassi S., Piškur J., Foschino R.. ( 2012;). Intraspecific variations of the Intron Splice Site in Dekkera/Brettanomyces bruxellensis genome studied by capillary electrophoresis separation. . Int J Food Microbiol 157:, 6–15. [CrossRef][PubMed]
    [Google Scholar]
  46. Vigentini I., Fabrizio V., Faccincani M., Picozzi C., Comasio A., Foschino R.. ( 2014;). Dynamics of Saccharomyces cerevisiae populations in controlled and spontaneous fermentations for Franciacorta D.O.C.G. base wine production. . Ann Microbiol 64:, 639–651. [CrossRef]
    [Google Scholar]
  47. Zott K., Claisse O., Lucas P., Coulon J., Lonvaud-Funel A., Masneuf-Pomarede I.. ( 2010;). Characterization of the yeast ecosystem in grape must and wine using real-time PCR. . Food Microbiol 27:, 559–567. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000004
Loading
/content/journal/micro/10.1099/mic.0.000004
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error