1887

Abstract

Shiga toxins are the main virulence factors of a group of strains [Shiga toxin-producing (STEC)] that cause severe human diseases, such as haemorrhagic colitis and haemolytic–uraemic syndrome. The Shiga toxin family comprises several toxin subtypes, which have been differentially related to clinical manifestations. In addition, the phages that carry the Shiga toxin genes ( phages) are also diverse. These phages play an important role not only in the dissemination of Shiga toxin genes and the emergence of new STEC strains, but also in the regulation of Shiga toxin production. Consequently, differences in phages may affect the dissemination of genes as well as the virulence of STEC strains. In addition to presenting an overview of Shiga toxins and phages, in this review we highlight current knowledge about the diversity of phages, with emphasis on its impact on STEC virulence. We consider that this diversity should be taken into account when developing STEC infection treatments and diagnostic approaches, and when conducting STEC control in reservoirs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000003
2015-03-01
2019-11-12
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/3/451.html?itemId=/content/journal/micro/10.1099/mic.0.000003&mimeType=html&fmt=ahah

References

  1. Aertsen A., Faster D., Michiels C. W.. ( 2005a;). Induction of Shiga toxin-converting prophage in Escherichia coli by high hydrostatic pressure. . Appl Environ Microbiol 71:, 1155–1162. [CrossRef][PubMed]
    [Google Scholar]
  2. Aertsen A., Van Houdt R., Michiels C. W.. ( 2005b;). Construction and use of an stx1 transcriptional fusion to gfp. . FEMS Microbiol Lett 245:, 73–77. [CrossRef][PubMed]
    [Google Scholar]
  3. Ahmad A., Zurek L.. ( 2006;). Evaluation of the anti-terminator Q933 gene as a marker for Escherichia coli O157 : H7 with high Shiga toxin production. . Curr Microbiol 53:, 324–328. [CrossRef][PubMed]
    [Google Scholar]
  4. Ahmed S. A., Awosika J., Baldwin C., Bishop-Lilly K. A., Biswas B., Broomall S., Chain P. S., Chertkov O., Chokoshvili O.. & other authors ( 2012;). Genomic comparison of Escherichia coli O104 : H4 isolates from 2009 and 2011 reveals plasmid, and prophage heterogeneity, including Shiga toxin encoding phage stx2. . PLoS One 7:, e48228. [CrossRef][PubMed]
    [Google Scholar]
  5. Allison H. E., Sergeant M. J., James C. E., Saunders J. R., Smith D. L., Sharp R. J., Marks T. S., McCarthy A. J.. ( 2003;). Immunity profiles of wild-type and recombinant Shiga-like toxin-encoding bacteriophages and characterization of novel double lysogens. . Infect Immun 71:, 3409–3418. [CrossRef][PubMed]
    [Google Scholar]
  6. Allué-Guardia A., Martínez-Castillo A., Muniesa M.. ( 2014;). Persistence of infectious Shiga toxin-encoding bacteriophages after disinfection treatments. . Appl Environ Microbiol 80:, 2142–2149. [CrossRef][PubMed]
    [Google Scholar]
  7. Ardissino G., Possenti I., Tel F., Testa S., Paglialonga F.. ( 2014;). Time to change the definition of hemolytic uremic syndrome. . Eur J Intern Med 25:, e29. [CrossRef][PubMed]
    [Google Scholar]
  8. Asadulghani M., Ogura Y., Ooka T., Itoh T., Sawaguchi A., Iguchi A., Nakayama K., Hayashi T.. ( 2009;). The defective prophage pool of Escherichia coli O157: prophage–prophage interactions potentiate horizontal transfer of virulence determinants. . PLoS Pathog 5:, e1000408. [CrossRef][PubMed]
    [Google Scholar]
  9. Bell B. P., Goldoft M., Griffin P. M., Davis M. A., Gordon D. C., Tarr P. I., Bartleson C. A., Lewis J. H., Barrett T. J.. & other authors ( 1994;). A multistate outbreak of Escherichia coli O157 : H7-associated bloody diarrhea and hemolytic uremic syndrome from hamburgers. The Washington experience. . JAMA 272:, 1349–1353. [CrossRef][PubMed]
    [Google Scholar]
  10. Bentancor L. V., Bilen M. F., Mejías M. P., Fernández-Brando R. J., Panek C. A., Ramos M. V., Fernández G. C., Isturiz M., Ghiringhelli P. D., Palermo M. S.. ( 2013a;). Functional capacity of Shiga-toxin promoter sequences in eukaryotic cells. . PLoS One 8:, e57128. [CrossRef][PubMed]
    [Google Scholar]
  11. Bentancor L. V., Mejías M. P., Pinto A., Bilen M. F., Meiss R., Rodriguez-Galán M. C., Baez N., Pedrotti L. P., Goldstein J. et al.. ( 2013b;). Promoter sequence of Shiga toxin 2 (Stx2) is recognized in vivo, leading to production of biologically active Stx2. . MBio 4:, e00501-13. [CrossRef]
    [Google Scholar]
  12. Bertin Y., Boukhors K., Pradel N., Livrelli V., Martin C.. ( 2001;). Stx2 subtyping of Shiga toxin-producing Escherichia coli isolated from cattle in France: detection of a new Stx2 subtype and correlation with additional virulence factors. . J Clin Microbiol 39:, 3060–3065. [CrossRef][PubMed]
    [Google Scholar]
  13. Besser T. E., Shaikh N., Holt N. J., Tarr P. I., Konkel M. E., Malik-Kale P., Walsh C. W., Whittam T. S., Bono J. L.. ( 2007;). Greater diversity of Shiga toxin-encoding bacteriophage insertion sites among Escherichia coli O157 : H7 isolates from cattle than in those from humans. . Appl Environ Microbiol 73:, 671–679. [CrossRef][PubMed]
    [Google Scholar]
  14. Beutin L., Krause G., Zimmermann S., Kaulfuss S., Gleier K.. ( 2004;). Characterization of Shiga toxin-producing Escherichia coli strains isolated from human patients in Germany over a 3-year period. . J Clin Microbiol 42:, 1099–1108. [CrossRef][PubMed]
    [Google Scholar]
  15. Beutin L., Miko A., Krause G., Pries K., Haby S., Steege K., Albrecht N.. ( 2007;). Identification of human-pathogenic strains of Shiga toxin-producing Escherichia coli from food by a combination of serotyping and molecular typing of Shiga toxin genes. . Appl Environ Microbiol 73:, 4769–4775. [CrossRef][PubMed]
    [Google Scholar]
  16. Bielaszewska M., Friedrich A. W., Aldick T., Schürk-Bulgrin R., Karch H.. ( 2006;). Shiga toxin activatable by intestinal mucus in Escherichia coli isolated from humans: predictor for a severe clinical outcome. . Clin Infect Dis 43:, 1160–1167. [CrossRef][PubMed]
    [Google Scholar]
  17. Brett K. N., Hornitzky M. A., Bettelheim K. A., Walker M. J., Djordjevic S. P.. ( 2003a;). Bovine non-O157 Shiga toxin 2-containing Escherichia coli isolates commonly possess stx2-EDL933 and/or stx2vhb subtypes. . J Clin Microbiol 41:, 2716–2722. [CrossRef][PubMed]
    [Google Scholar]
  18. Brett K. N., Ramachandran V., Hornitzky M. A., Bettelheim K. A., Walker M. J., Djordjevic S. P.. ( 2003b;). stx1c Is the most common Shiga toxin 1 subtype among Shiga toxin-producing Escherichia coli isolates from sheep but not among isolates from cattle. . J Clin Microbiol 41:, 926–936. [CrossRef][PubMed]
    [Google Scholar]
  19. Calderwood S. B., Mekalanos J. J.. ( 1987;). Iron regulation of Shiga-like toxin expression in Escherichia coli is mediated by the fur locus. . J Bacteriol 169:, 4759–4764.[PubMed]
    [Google Scholar]
  20. Chase-Topping M. E., Rosser T., Allison L. J., Courcier E., Evans J., McKendrick I. J., Pearce M. C., Handel I., Caprioli A.. & other authors ( 2012;). Pathogenic potential to humans of bovine Escherichia coli O26, Scotland. . Emerg Infect Dis 18:, 439–448. [CrossRef][PubMed]
    [Google Scholar]
  21. Cooper K. K., Mandrell R. E., Louie J. W., Korlach J., Clark T. A., Parker C. T., Huynh S., Chain P. S., Ahmed S., Carter M. Q.. ( 2014;). Comparative genomics of enterohemorrhagic Escherichia coli O145 : H28 demonstrates a common evolutionary lineage with Escherichia coli O157 : H7. . BMC Genomics 15:, 17. [CrossRef][PubMed]
    [Google Scholar]
  22. De Greve H., Qizhi C., Deboeck F., Hernalsteens J.-P.. ( 2002;). The Shiga-toxin VT2-encoding bacteriophage ϕ297 integrates at a distinct position in the Escherichia coli genome. . Biochim Biophys Acta 1579:, 196–202. [CrossRef][PubMed]
    [Google Scholar]
  23. de Sablet T., Bertin Y., Vareille M., Girardeau J.-P., Garrivier A., Gobert A. P., Martin C.. ( 2008;). Differential expression of stx2 variants in Shiga toxin-producing Escherichia coli belonging to seropathotypes A and C. . Microbiology 154:, 176–186. [CrossRef][PubMed]
    [Google Scholar]
  24. de Sablet T., Chassard C., Bernalier-Donadille A., Vareille M., Gobert A. P., Martin C.. ( 2009;). Human microbiota-secreted factors inhibit Shiga toxin synthesis by enterohemorrhagic Escherichia coli O157 : H7. . Infect Immun 77:, 783–790. [CrossRef][PubMed]
    [Google Scholar]
  25. Dumke R., Schröter-Bobsin U., Jacobs E., Röske I.. ( 2006;). Detection of phages carrying the Shiga toxin 1 and 2 genes in waste water and river water samples. . Lett Appl Microbiol 42:, 48–53. [CrossRef][PubMed]
    [Google Scholar]
  26. Eklund M., Leino K., Siitonen A.. ( 2002;). Clinical Escherichia coli strains carrying stx genes: stx variants and stx-positive virulence profiles. . J Clin Microbiol 40:, 4585–4593. [CrossRef][PubMed]
    [Google Scholar]
  27. Endo Y., Tsurugi K., Yutsudo T., Takeda Y., Ogasawara T., Igarashi K.. ( 1988;). Site of action of a Vero toxin (VT2) from Escherichia coli O157 : H7 and of Shiga toxin on eukaryotic ribosomes. RNA N-glycosidase activity of the toxins. . Eur J Biochem 171:, 45–50. [CrossRef][PubMed]
    [Google Scholar]
  28. Fogg P. C. M., Saunders J. R., McCarthy A. J., Allison H. E.. ( 2012;). Cumulative effect of prophage burden on Shiga toxin production in Escherichia coli. . Microbiology 158:, 488–497. [CrossRef][PubMed]
    [Google Scholar]
  29. Frank C., Werber D., Cramer J. P., Askar M., Faber M., an der Heiden M., Bernard H., Fruth A., Prager R.. & other authors ( 2011;). Epidemic profile of Shiga-toxin-producing Escherichia coli O104 : H4 outbreak in Germany. . N Engl J Med 365:, 1771–1780. [CrossRef][PubMed]
    [Google Scholar]
  30. Friedrich A. W., Bielaszewska M., Zhang W.-L., Pulz M., Kuczius T., Ammon A., Karch H.. ( 2002;). Escherichia coli harboring Shiga toxin 2 gene variants: frequency and association with clinical symptoms. . J Infect Dis 185:, 74–84. [CrossRef][PubMed]
    [Google Scholar]
  31. Friesema I., van der Zwaluw K., Schuurman T., Kooistra-Smid M., Franz E., van Duynhoven Y., van Pelt W.. ( 2014;). Emergence of Escherichia coli encoding Shiga toxin 2f in human Shiga toxin-producing E. coli (STEC) infections in the Netherlands, January 2008 to December 2011. . Euro Surveill 19:, 26–32.[PubMed]
    [Google Scholar]
  32. Fuchs S., Mühldorfer I., Donohue-Rolfe A., Kerényi M., Emödy L., Alexiev R., Nenkov P., Hacker J.. ( 1999;). Influence of RecA on in vivo virulence and Shiga toxin 2 production in Escherichia coli pathogens. . Microb Pathog 27:, 13–23. [CrossRef][PubMed]
    [Google Scholar]
  33. Fuller C. A., Pellino C. A., Flagler M. J., Strasser J. E., Weiss A. A.. ( 2011;). Shiga toxin subtypes display dramatic differences in potency. . Infect Immun 79:, 1329–1337. [CrossRef][PubMed]
    [Google Scholar]
  34. Gamage S. D., Strasser J. E., Chalk C. L., Weiss A. A.. ( 2003;). Nonpathogenic Escherichia coli can contribute to the production of Shiga toxin. . Infect Immun 71:, 3107–3115. [CrossRef][PubMed]
    [Google Scholar]
  35. Gamage S. D., Patton A. K., Hanson J. F., Weiss A. A.. ( 2004;). Diversity and host range of Shiga toxin-encoding phage. . Infect Immun 72:, 7131–7139. [CrossRef][PubMed]
    [Google Scholar]
  36. Gamage S. D., Patton A. K., Strasser J. E., Chalk C. L., Weiss A. A.. ( 2006;). Commensal bacteria influence Escherichia coli O157 : H7 persistence and Shiga toxin production in the mouse intestine. . Infect Immun 74:, 1977–1983. [CrossRef][PubMed]
    [Google Scholar]
  37. García-Aljaro C., Muniesa M., Jofre J., Blanch A. R.. ( 2009;). Genotypic and phenotypic diversity among induced, stx2-carrying bacteriophages from environmental Escherichia coli strains. . Appl Environ Microbiol 75:, 329–336. [CrossRef][PubMed]
    [Google Scholar]
  38. Garg A. X., Suri R. S., Barrowman N., Rehman F., Matsell D., Rosas-Arellano M. P., Salvadori M., Haynes R. B., Clark W. F.. ( 2003;). Long-term renal prognosis of diarrhea-associated hemolytic uremic syndrome: a systematic review, meta-analysis, and meta-regression. . JAMA 290:, 1360–1370. [CrossRef][PubMed]
    [Google Scholar]
  39. Gianantonio C., Vitacco M., Mendilaharzu F., Rutty A., Mendilaharzu J.. ( 1964;). The hemolytic–uremic syndrome. . J Pediatr 64:, 478–491. [CrossRef][PubMed]
    [Google Scholar]
  40. Girardeau J. P., Dalmasso A., Bertin Y., Ducrot C., Bord S., Livrelli V., Vernozy-Rozand C., Martin C.. ( 2005;). Association of virulence genotype with phylogenetic background in comparison to different seropathotypes of Shiga toxin-producing Escherichia coli isolates. . J Clin Microbiol 43:, 6098–6107. [CrossRef][PubMed]
    [Google Scholar]
  41. Gobius K. S., Higgs G. M., Desmarchelier P. M.. ( 2003;). Presence of activatable Shiga toxin genotype (stx2d) in Shiga toxigenic Escherichia coli from livestock sources. . J Clin Microbiol 41:, 3777–3783. [CrossRef][PubMed]
    [Google Scholar]
  42. Guh A., Phan Q., Nelson R., Purviance K., Milardo E., Kinney S., Mshar P., Kasacek W., Cartter M.. ( 2010;). Outbreak of Escherichia coli O157 associated with raw milk, Connecticut, 2008. . Clin Infect Dis 51:, 1411–1417. [CrossRef][PubMed]
    [Google Scholar]
  43. Harris S. M., Yue W.-F., Olsen S. A., Hu J., Means W. J., McCormick R. J., Du M., Zhu M.-J.. ( 2012;). Salt at concentrations relevant to meat processing enhances Shiga toxin 2 production in Escherichia coli O157 : H7. . Int J Food Microbiol 159:, 186–192. [CrossRef][PubMed]
    [Google Scholar]
  44. Herold S., Siebert J., Huber A., Schmidt H.. ( 2005;). Global expression of prophage genes in Escherichia coli O157 : H7 strain EDL933 in response to norfloxacin. . Antimicrob Agents Chemother 49:, 931–944. [CrossRef][PubMed]
    [Google Scholar]
  45. Huang A., Friesen J., Brunton J. L.. ( 1987;). Characterization of a bacteriophage that carries the genes for production of Shiga-like toxin 1 in Escherichia coli. . J Bacteriol 169:, 4308–4312.[PubMed]
    [Google Scholar]
  46. Imamovic L., Muniesa M.. ( 2012;). Characterizing RecA-independent induction of Shiga toxin2-encoding phages by EDTA treatment. . PLoS One 7:, e32393. [CrossRef][PubMed]
    [Google Scholar]
  47. Imamovic L., Jofre J., Schmidt H., Serra-Moreno R., Muniesa M.. ( 2009;). Phage-mediated Shiga toxin 2 gene transfer in food and water. . Appl Environ Microbiol 75:, 1764–1768. [CrossRef][PubMed]
    [Google Scholar]
  48. Jenkins C., Willshaw G. A., Evans J., Cheasty T., Chart H., Shaw D. J., Dougan G., Frankel G., Smith H. R.. ( 2003;). Subtyping of virulence genes in verocytotoxin-producing Escherichia coli (VTEC) other than serogroup O157 associated with disease in the United Kingdom. . J Med Microbiol 52:, 941–947. [CrossRef][PubMed]
    [Google Scholar]
  49. Kajiura T., Tanaka M., Wada H., Ito K., Koyama H., Kato F.. ( 2001;). Effects of disinfectants on Shiga-like toxin converting phage from enterohemorrhagic Escherichia coli O157 : H7. . J Health Sci 47:, 203–207. [CrossRef]
    [Google Scholar]
  50. Karama M., Gyles C. L.. ( 2008;). Characterization of verotoxin-encoding phages from Escherichia coli O103 : H2 strains of bovine and human origins. . Appl Environ Microbiol 74:, 5153–5158. [CrossRef][PubMed]
    [Google Scholar]
  51. Karch H., Schmidt H., Janetzki-Mittmann C., Scheef J., Kröger M.. ( 1999;). Shiga toxins even when different are encoded at identical positions in the genomes of related temperate bacteriophages. . Mol Gen Genet 262:, 600–607. [CrossRef][PubMed]
    [Google Scholar]
  52. Karmali M. A., Petric M., Lim C., Fleming P. C., Arbus G. S., Lior H.. ( 1985;). The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producing Escherichia coli. . J Infect Dis 151:, 775–782. [CrossRef][PubMed]
    [Google Scholar]
  53. Keen E. C.. ( 2012;). Paradigms of pathogenesis: targeting the mobile genetic elements of disease. . Front Cell Infect Microbiol 2:, 161. [CrossRef][PubMed]
    [Google Scholar]
  54. Kimmitt P. T., Harwood C. R., Barer M. R.. ( 1999;). Induction of type 2 Shiga toxin synthesis in Escherichia coli O157 by 4-quinolones. . Lancet 353:, 1588–1589. [CrossRef][PubMed]
    [Google Scholar]
  55. Kimmitt P. T., Harwood C. R., Barer M. R.. ( 2000;). Toxin gene expression by Shiga toxin-producing Escherichia coli: the role of antibiotics and the bacterial SOS response. . Emerg Infect Dis 6:, 458–465. [CrossRef][PubMed]
    [Google Scholar]
  56. Koch C., Hertwig S., Lurz R., Appel B., Beutin L.. ( 2001;). Isolation of a lysogenic bacteriophage carrying the stx1OX3 gene, which is closely associated with Shiga toxin-producing Escherichia coli strains from sheep and humans. . J Clin Microbiol 39:, 3992–3998. [CrossRef][PubMed]
    [Google Scholar]
  57. Koch C., Hertwig S., Appel B.. ( 2003;). Nucleotide sequence of the integration site of the temperate bacteriophage 6220, which carries the Shiga toxin gene stx1ox3.. J Bacteriol 185:, 6463–6466. [CrossRef][PubMed]
    [Google Scholar]
  58. Köhler B., Karch H., Schmidt H.. ( 2000;). Antibacterials that are used as growth promoters in animal husbandry can affect the release of Shiga-toxin-2-converting bacteriophages and Shiga toxin 2 from Escherichia coli strains. . Microbiology 146:, 1085–1090.[PubMed]
    [Google Scholar]
  59. Konowalchuk J., Speirs J. I., Stavric S.. ( 1977;). Vero response to a cytotoxin of Escherichia coli. . Infect Immun 18:, 775–779.[PubMed]
    [Google Scholar]
  60. Krüger A., Lucchesi P. M. A., Parma A. E.. ( 2011;). Verotoxins in bovine and meat verotoxin-producing Escherichia coli isolates: type, number of variants, and relationship to cytotoxicity. . Appl Environ Microbiol 77:, 73–79. [CrossRef][PubMed]
    [Google Scholar]
  61. Launders N., Byrne L., Adams N., Glen K., Jenkins C., Tubin-Delic D., Locking M., Williams C., Morgan D..Outbreak Control Team ( 2013;). Outbreak of Shiga toxin-producing E. coli O157 associated with consumption of watercress, United Kingdom, August to September 2013. . Euro Surveill 18:, 20624. [CrossRef][PubMed]
    [Google Scholar]
  62. LeJeune J. T., Abedon S. T., Takemura K., Christie N. P., Sreevatsan S.. ( 2004;). Human Escherichia coli O157 : H7 genetic marker in isolates of bovine origin. . Emerg Infect Dis 10:, 1482–1485. [CrossRef][PubMed]
    [Google Scholar]
  63. Leung P. H. M., Peiris J. S. M., Ng W. W. S., Robins-Browne R. M., Bettelheim K. A., Yam W. C.. ( 2003;). A newly discovered verotoxin variant, VT2g, produced by bovine verocytotoxigenic Escherichia coli. . Appl Environ Microbiol 69:, 7549–7553. [CrossRef][PubMed]
    [Google Scholar]
  64. Linggood M. A., Thompson J. M.. ( 1987;). Verotoxin production among porcine strains of Escherichia coli and its association with oedema disease. . J Med Microbiol 24:, 359–362. [CrossRef][PubMed]
    [Google Scholar]
  65. Livny J., Friedman D. I.. ( 2004;). Characterizing spontaneous induction of Stx encoding phages using a selectable reporter system. . Mol Microbiol 51:, 1691–1704. [CrossRef][PubMed]
    [Google Scholar]
  66. Loirat C.. ( 2013;). [ Hemolytic uremic syndrome caused by Shiga-toxin-producing Escherichia coli. ]. Rev Prat 63:, 11–16 (in French).[PubMed]
    [Google Scholar]
  67. Łoś J. M., Łoś M., Węgrzyn G., Węgrzyn A.. ( 2009;). Differential efficiency of induction of various lambdoid prophages responsible for production of Shiga toxins in response to different induction agents. . Microb Pathog 47:, 289–298. [CrossRef][PubMed]
    [Google Scholar]
  68. Łoś J. M., Łoś M., Węgrzyn A., Węgrzyn G.. ( 2010;). Hydrogen peroxide-mediated induction of the Shiga toxin-converting lambdoid prophage ST2-8624 in Escherichia coli O157 : H7. . FEMS Immunol Med Microbiol 58:, 322–329.[PubMed]
    [Google Scholar]
  69. Łoś J. M., Łoś M., Węgrzyn G.. ( 2011;). Bacteriophages carrying Shiga toxin genes: genomic variations, detection and potential treatment of pathogenic bacteria. . Future Microbiol 6:, 909–924. [CrossRef][PubMed]
    [Google Scholar]
  70. Łoś J. M., Łoś M., Węgrzyn A., Węgrzyn G.. ( 2013;). Altruism of Shiga toxin-producing Escherichia coli: recent hypothesis versus experimental results. . Front Cell Infect Microbiol 2:, 166. [CrossRef][PubMed]
    [Google Scholar]
  71. Luna-Gierke R. E., Griffin P. M., Gould L. H., Herman K., Bopp C. A., Strockbine N., Mody R. K.. ( 2014;). Outbreaks of non-O157 Shiga toxin-producing Escherichia coli infection: USA. . Epidemiol Infect 142:, 2270–2280. [CrossRef][PubMed]
    [Google Scholar]
  72. Makino K., Yokoyama K., Kubota Y., Yutsudo C. H., Kimura S., Kurokawa K., Ishii K., Hattori M., Tatsuno I.. & other authors ( 1999;). Complete nucleotide sequence of the prophage VT2-Sakai carrying the verotoxin 2 genes of the enterohemorrhagic Escherichia coli O157 : H7 derived from the Sakai outbreak. . Genes Genet Syst 74:, 227–239. [CrossRef][PubMed]
    [Google Scholar]
  73. Matsushiro A., Sato K., Miyamoto H., Yamamura T., Honda T.. ( 1999;). Induction of prophages of enterohemorrhagic Escherichia coli O157 : H7 with norfloxacin. . J Bacteriol 181:, 2257–2260.[PubMed]
    [Google Scholar]
  74. Matthews L., Reeve R., Gally D. L., Low J. C., Woolhouse M. E., McAteer S. P., Locking M. E., Chase-Topping M. E., Haydon D. T.. & other authors ( 2013;). Predicting the public health benefit of vaccinating cattle against Escherichia coli O157. . Proc Natl Acad Sci U S A 110:, 16265–16270. [CrossRef][PubMed]
    [Google Scholar]
  75. Mauro S. A., Koudelka G. B.. ( 2011;). Shiga toxin: expression, distribution, and its role in the environment. . Toxins (Basel) 3:, 608–625. [CrossRef][PubMed]
    [Google Scholar]
  76. McDonald J. E., Smith D. L., Fogg P. C. M., McCarthy A. J., Allison H. E.. ( 2010;). High-throughput method for rapid induction of prophages from lysogens and its application in the study of Shiga toxin-encoding Escherichia coli strains. . Appl Environ Microbiol 76:, 2360–2365. [CrossRef][PubMed]
    [Google Scholar]
  77. McGannon C. M., Fuller C. A., Weiss A. A.. ( 2010;). Different classes of antibiotics differentially influence Shiga toxin production. . Antimicrob Agents Chemother 54:, 3790–3798. [CrossRef][PubMed]
    [Google Scholar]
  78. Mele C., Remuzzi G., Noris M.. ( 2014;). Hemolytic uremic syndrome. . Semin Immunopathol 36:, 399–420. [CrossRef][PubMed]
    [Google Scholar]
  79. Mellmann A., Harmsen D., Cummings C. A., Zentz E. B., Leopold S. R., Rico A., Prior K., Szczepanowski R., Ji Y.. & other authors ( 2011;). Prospective genomic characterization of the German enterohemorrhagic Escherichia coli O104 : H4 outbreak by rapid next generation sequencing technology. . PLoS One 6:, e22751. [CrossRef][PubMed]
    [Google Scholar]
  80. Mellor G. E., Sim E. M., Barlow R. S., D’Astek B. A., Galli L., Chinen I., Rivas M., Gobius K. S.. ( 2012;). Phylogenetically related Argentinean and Australian Escherichia coli O157 isolates are distinguished by virulence clades and alternative Shiga toxin 1 and 2 prophages. . Appl Environ Microbiol 78:, 4724–4731. [CrossRef][PubMed]
    [Google Scholar]
  81. Miyamoto H., Nakai W., Yajima N., Fujibayashi A., Higuchi T., Sato K., Matsushiro A.. ( 1999;). Sequence analysis of Stx2-converting phage VT2-Sa shows a great divergence in early regulation and replication regions. . DNA Res 6:, 235–240. [CrossRef][PubMed]
    [Google Scholar]
  82. Mühldorfer I., Hacker J., Keusch G. T., Acheson D. W., Tschäpe H., Kane A. V., Ritter A., Olschläger T., Donohue-Rolfe A.. ( 1996;). Regulation of the Shiga-like toxin II operon in Escherichia coli. . Infect Immun 64:, 495–502.[PubMed]
    [Google Scholar]
  83. Muniesa M., Lucena F., Jofre J.. ( 1999;). Comparative survival of free shiga toxin 2-encoding phages and Escherichia coli strains outside the gut. . Appl Environ Microbiol 65:, 5615–5618.[PubMed]
    [Google Scholar]
  84. Muniesa M., Recktenwald J., Bielaszewska M., Karch H., Schmidt H.. ( 2000;). Characterization of a Shiga toxin 2e-converting bacteriophage from an Escherichia coli strain of human origin. . Infect Immun 68:, 4850–4855. [CrossRef][PubMed]
    [Google Scholar]
  85. Muniesa M., de Simon M., Prats G., Ferrer D., Pañella H., Jofre J.. ( 2003;). Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157 : H7 strains of human origin isolated from a single outbreak. . Infect Immun 71:, 4554–4562. [CrossRef][PubMed]
    [Google Scholar]
  86. Muniesa M., Blanco J. E., De Simón M., Serra-Moreno R., Blanch A. R., Jofre J.. ( 2004a;). Diversity of stx2 converting bacteriophages induced from Shiga-toxin-producing Escherichia coli strains isolated from cattle. . Microbiology 150:, 2959–2971. [CrossRef][PubMed]
    [Google Scholar]
  87. Muniesa M., Serra-Moreno R., Jofre J.. ( 2004b;). Free Shiga toxin bacteriophages isolated from sewage showed diversity although the stx genes appeared conserved. . Environ Microbiol 6:, 716–725. [CrossRef][PubMed]
    [Google Scholar]
  88. Nassar F. J., Rahal E. A., Sabra A., Matar G. M.. ( 2013;). Effects of subinhibitory concentrations of antimicrobial agents on Escherichia coli O157 : H7 Shiga toxin release and role of the SOS response. . Foodborne Pathog Dis 10:, 805–812. [CrossRef][PubMed]
    [Google Scholar]
  89. Naylor S. W., Gally D. L., Low J. C.. ( 2005;). Enterohaemorrhagic E. coli in veterinary medicine. . Int J Med Microbiol 295:, 419–441. [CrossRef][PubMed]
    [Google Scholar]
  90. Neely M. N., Friedman D. I.. ( 1998;). Functional and genetic analysis of regulatory regions of coliphage H-19B: location of Shiga-like toxin and lysis genes suggest a role for phage functions in toxin release. . Mol Microbiol 28:, 1255–1267. [CrossRef][PubMed]
    [Google Scholar]
  91. Nejman B., Nadratowska-Wesołowska B., Szalewska-Pałasz A., Węgrzyn A., Węgrzyn G.. ( 2011;). Replication of plasmids derived from Shiga toxin-converting bacteriophages in starved Escherichia coli. . Microbiology 157:, 220–233. [CrossRef][PubMed]
    [Google Scholar]
  92. Nejman-Faleńczyk B., Golec P., Maciąg M., Węgrzyn A., Węgrzyn G.. ( 2012;). Inhibition of development of Shiga toxin-converting bacteriophages by either treatment with citrate or amino acid starvation. . Foodborne Pathog Dis 9:, 13–19. [CrossRef][PubMed]
    [Google Scholar]
  93. Neupane M., Abu-Ali G. S., Mitra A., Lacher D. W., Manning S. D., Riordan J. T.. ( 2011;). Shiga toxin 2 overexpression in Escherichia coli O157 : H7 strains associated with severe human disease. . Microb Pathog 51:, 466–470. [CrossRef][PubMed]
    [Google Scholar]
  94. Nowicki D., Kobiela W., Węgrzyn A., Wegrzyn G., Szalewska-Pałasz A.. ( 2013;). ppGpp-dependent negative control of DNA replication of Shiga toxin-converting bacteriophages in Escherichia coli. . J Bacteriol 195:, 5007–5015. [CrossRef][PubMed]
    [Google Scholar]
  95. Nowicki D., Maciąg-Dorszyńska M., Kobiela W., Herman-Antosiewicz A., Węgrzyn A., Szalewska-Pałasz A., Węgrzyn G.. ( 2014;). Phenethyl isothiocyanate inhibits Shiga toxin production in enterohemorrhagic Escherichia coli by stringent response induction. . Antimicrob Agents Chemother 58:, 2304–2315. [CrossRef][PubMed]
    [Google Scholar]
  96. Nübling S., Eisele T., Stöber H., Funk J., Polzin S., Fischer L., Schmidt H.. ( 2014;). Bacteriophage 933W encodes a functional esterase downstream of the Shiga toxin 2a operon. . Int J Med Microbiol 304:, 269–274. [CrossRef][PubMed]
    [Google Scholar]
  97. O’Brien A. D., Newland J. W., Miller S. F., Holmes R. K., Smith H. W., Formal S. B.. ( 1984;). Shiga-like toxin-converting phages from Escherichia coli strains that cause hemorrhagic colitis or infantile diarrhea. . Science 226:, 694–696. [CrossRef][PubMed]
    [Google Scholar]
  98. Ochoa T. J., Chen J., Walker C. M., Gonzales E., Cleary T. G.. ( 2007;). Rifaximin does not induce toxin production or phage-mediated lysis of Shiga toxin-producing Escherichia coli. . Antimicrob Agents Chemother 51:, 2837–2841. [CrossRef][PubMed]
    [Google Scholar]
  99. Ohara T., Kojio S., Taneike I., Nakagawa S., Gondaira F., Tamura Y., Gejyo F., Zhang H. M., Yamamoto T.. ( 2002;). Effects of azithromycin on Shiga toxin production by Escherichia coli and subsequent host inflammatory response. . Antimicrob Agents Chemother 46:, 3478–3483. [CrossRef][PubMed]
    [Google Scholar]
  100. Oot R. A., Raya R. R., Callaway T. R., Edrington T. S., Kutter E. M., Brabban A. D.. ( 2007;). Prevalence of Escherichia coli O157 and O157 : H7-infecting bacteriophages in feedlot cattle feces. . Lett Appl Microbiol 45:, 445–453. [CrossRef][PubMed]
    [Google Scholar]
  101. Osawa R., Iyoda S., Nakayama S. I., Wada A., Yamai S., Watanabe H.. ( 2000;). Genotypic variations of Shiga toxin-converting phages from enterohaemorrhagic Escherichia coli O157 : H7 isolates. . J Med Microbiol 49:, 565–574.[PubMed]
    [Google Scholar]
  102. Park D., Stanton E., Ciezki K., Parrell D., Bozile M., Pike D., Forst S. A., Jeong K. C., Ivanek R.. & other authors ( 2013;). Evolution of the Stx2-encoding prophage in persistent bovine Escherichia coli O157 : H7 strains. . Appl Environ Microbiol 79:, 1563–1572. [CrossRef][PubMed]
    [Google Scholar]
  103. Persson S., Olsen K. E. P., Ethelberg S., Scheutz F.. ( 2007;). Subtyping method for Escherichia coli Shiga toxin (verocytotoxin) 2 variants and correlations to clinical manifestations. . J Clin Microbiol 45:, 2020–2024. [CrossRef][PubMed]
    [Google Scholar]
  104. Picozzi C., Volponi G., Vigentini I., Grassi S., Foschino R.. ( 2012;). Assessment of transduction of Escherichia coli Stx2-encoding phage in dairy process conditions. . Int J Food Microbiol 153:, 388–394. [CrossRef][PubMed]
    [Google Scholar]
  105. Piérard D., De Greve H., Haesebrouck F., Mainil J.. ( 2012;). O157 : H7 and O104 : H4 Vero/Shiga toxin-producing Escherichia coli outbreaks: respective role of cattle and humans. . Vet Res 43:, 13. [CrossRef][PubMed]
    [Google Scholar]
  106. Plunkett G. III, Rose D. J., Durfee T. J., Blattner F. R.. ( 1999;). Sequence of Shiga toxin 2 phage 933W from Escherichia coli O157 : H7: Shiga toxin as a phage late-gene product. . J Bacteriol 181:, 1767–1778.[PubMed]
    [Google Scholar]
  107. Recktenwald J., Schmidt H.. ( 2002;). The nucleotide sequence of Shiga toxin (Stx) 2e-encoding phage phiP27 is not related to other Stx phage genomes, but the modular genetic structure is conserved. . Infect Immun 70:, 1896–1908. [CrossRef][PubMed]
    [Google Scholar]
  108. Rietra P. J., Willshaw G. A., Smith H. R., Field A. M., Scotland S. M., Rowe B.. ( 1989;). Comparison of Vero-cytotoxin-encoding phages from Escherichia coli of human and bovine origin. . J Gen Microbiol 135:, 2307–2318.[PubMed]
    [Google Scholar]
  109. Riley L. W., Remis R. S., Helgerson S. D., McGee H. B., Wells J. G., Davis B. R., Hebert R. J., Olcott E. S., Johnson L. M.. & other authors ( 1983;). Hemorrhagic colitis associated with a rare Escherichia coli serotype. . N Engl J Med 308:, 681–685. [CrossRef][PubMed]
    [Google Scholar]
  110. Robert Koch Institute ( 2011;). Report: Final Presentation and Evaluation of Epidemiological Findings in the EHEC O104 : H4 Outbreak, Germany 2011. Berlin:: Robert Koch Institute;.
    [Google Scholar]
  111. Robinson C. M., Sinclair J. F., Smith M. J., O’Brien A. D.. ( 2006;). Shiga toxin of enterohemorrhagic Escherichia coli type O157 : H7 promotes intestinal colonization. . Proc Natl Acad Sci U S A 103:, 9667–9672. [CrossRef][PubMed]
    [Google Scholar]
  112. Rode T. M., Axelsson L., Granum P. E., Heir E., Holck A., L’abée-Lund T. M.. ( 2011;). High stability of Stx2 phage in food and under food-processing conditions. . Appl Environ Microbiol 77:, 5336–5341. [CrossRef][PubMed]
    [Google Scholar]
  113. Russo L. M., Melton-Celsa A. R., Smith M. J., O’Brien A. D.. ( 2014;). Comparisons of native Shiga toxins (Stxs) type 1 and 2 with chimeric toxins indicate that the source of the binding subunit dictates degree of toxicity. . PLoS One 9:, e93463. [CrossRef][PubMed]
    [Google Scholar]
  114. Saxena S. K., O’Brien A. D., Ackerman E. J.. ( 1989;). Shiga toxin, Shiga-like toxin II variant, and ricin are all single-site RNA N-glycosidases of 28 S RNA when microinjected into Xenopus oocytes. . J Biol Chem 264:, 596–601.[PubMed]
    [Google Scholar]
  115. Scheutz F., Teel L. D., Beutin L., Piérard D., Buvens G., Karch H., Mellmann A., Caprioli A., Tozzoli R.. & other authors ( 2012;). Multicenter evaluation of a sequence-based protocol for subtyping Shiga toxins and standardizing Stx nomenclature. . J Clin Microbiol 50:, 2951–2963. [CrossRef][PubMed]
    [Google Scholar]
  116. Schmidt H., Scheef J., Morabito S., Caprioli A., Wieler L. H., Karch H.. ( 2000;). A new Shiga toxin 2 variant (Stx2f) from Escherichia coli isolated from pigeons. . Appl Environ Microbiol 66:, 1205–1208. [CrossRef][PubMed]
    [Google Scholar]
  117. Scotland S. M., Smith H. R., Willshaw G. A., Rowe B.. ( 1983;). Vero cytotoxin production in strain of Escherichia coli is determined by genes carried on bacteriophage. . Lancet 322:, 216. [CrossRef][PubMed]
    [Google Scholar]
  118. Serra-Moreno R., Jofre J., Muniesa M.. ( 2007;). Insertion site occupancy by stx2 bacteriophages depends on the locus availability of the host strain chromosome. . J Bacteriol 189:, 6645–6654. [CrossRef][PubMed]
    [Google Scholar]
  119. Serra-Moreno R., Jofre J., Muniesa M.. ( 2008;). The CI repressors of Shiga toxin-converting prophages are involved in coinfection of Escherichia coli strains, which causes a down regulation in the production of Shiga toxin 2. . J Bacteriol 190:, 4722–4735. [CrossRef][PubMed]
    [Google Scholar]
  120. Shaikh N., Tarr P. I.. ( 2003;). Escherichia coli O157 : H7 Shiga toxin-encoding bacteriophages: integrations, excisions, truncations, and evolutionary implications. . J Bacteriol 185:, 3596–3605. [CrossRef][PubMed]
    [Google Scholar]
  121. Shringi S., Schmidt C., Katherine K., Brayton K. A., Hancock D. D., Besser T. E.. ( 2012;). Carriage of stx2a differentiates clinical and bovine-biased strains of Escherichia coli O157. . PLoS One 7:, e51572. [CrossRef][PubMed]
    [Google Scholar]
  122. Smith D. L., Wareing B. M., Fogg P. C., Riley L. M., Spencer M., Cox M. J., Saunders J. R., McCarthy A. J., Allison H. E.. ( 2007;). Multilocus characterization scheme for Shiga toxin-encoding bacteriophages. . Appl Environ Microbiol 73:, 8032–8040. [CrossRef][PubMed]
    [Google Scholar]
  123. Smith D. L., Rooks D. J., Fogg P. C., Darby A. C., Thomson N. R., McCarthy A. J., Allison H. E.. ( 2012;). Comparative genomics of Shiga toxin encoding bacteriophages. . BMC Genomics 13:, 311. [CrossRef][PubMed]
    [Google Scholar]
  124. Smith H. R., Day N. P., Scotland S. M., Gross R. J., Rowe B.. ( 1984;). Phage-determined production of Vero cytotoxin in strains of Escherichia coli serogroup O157. . Lancet 323:, 1242–1243. [CrossRef][PubMed]
    [Google Scholar]
  125. Smith H. W., Green P., Parsell Z.. ( 1983;). Vero cell toxins in Escherichia coli and related bacteria: transfer by phage and conjugation and toxic action in laboratory animals, chickens and pigs. . J Gen Microbiol 129:, 3121–3137.[PubMed]
    [Google Scholar]
  126. Solheim H. T., Sekse C., Urdahl A. M., Wasteson Y., Nesse L. L.. ( 2013;). Biofilm as an environment for dissemination of stx genes by transduction. . Appl Environ Microbiol 79:, 896–900. [CrossRef][PubMed]
    [Google Scholar]
  127. Spinale J. M., Ruebner R. L., Copelovitch L., Kaplan B. S.. ( 2013;). Long-term outcomes of Shiga toxin hemolytic uremic syndrome. . Pediatr Nephrol 28:, 2097–2105. [CrossRef][PubMed]
    [Google Scholar]
  128. Steinberg K. M., Levin B. R.. ( 2007;). Grazing protozoa and the evolution of the Escherichia coli O157 : H7 Shiga toxin-encoding prophage. . Proc Biol Sci 274:, 1921–1929. [CrossRef][PubMed]
    [Google Scholar]
  129. Steyert S. R., Sahl J. W., Fraser C. M., Teel L. D., Scheutz F., Rasko D. A.. ( 2012;). Comparative genomics and stx phage characterization of LEE-negative Shiga toxin-producing Escherichia coli. . Front Cell Infect Microbiol 2:, 133. [CrossRef][PubMed]
    [Google Scholar]
  130. Stolfa G., Koudelka G. B.. ( 2012;). Entry and killing of Tetrahymena thermophila by bacterially produced Shiga toxin. . MBio 4:, e00416–e12. [CrossRef][PubMed]
    [Google Scholar]
  131. Su L. K., Lu C. P., Wang Y., Cao D. M., Sun J. H., Yan Y. X.. ( 2010;). Lysogenic infection of a Shiga toxin 2-converting bacteriophage changes host gene expression, enhances host acid resistance and motility. . Mol Biol 44:, 54–66. [CrossRef]
    [Google Scholar]
  132. Tesh V. L.. ( 2010;). Induction of apoptosis by Shiga toxins. . Future Microbiol 5:, 431–453. [CrossRef][PubMed]
    [Google Scholar]
  133. Toshima H., Yoshimura A., Arikawa K., Hidaka A., Ogasawara J., Hase A., Masaki H., Nishikawa Y.. ( 2007;). Enhancement of Shiga toxin production in enterohemorrhagic Escherichia coli serotype O157 : H7 by DNase colicins. . Appl Environ Microbiol 73:, 7582–7588. [CrossRef][PubMed]
    [Google Scholar]
  134. Tozzoli R., Grande L., Michelacci V., Fioravanti R., Gally D., Xu X., La Ragione R., Anjum M., Wu G.. & other authors ( 2014a;). Identification and characterization of a peculiar vtx2-converting phage frequently present in verocytotoxin-producing Escherichia coli O157 isolated from human infections. . Infect Immun 82:, 3023–3032. [CrossRef][PubMed]
    [Google Scholar]
  135. Tozzoli R., Grande L., Michelacci V., Ranieri P., Maugliani A., Caprioli A., Morabito S.. ( 2014b;). Shiga toxin-converting phages and the emergence of new pathogenic Escherichia coli: a world in motion. . Front Cell Infect Microbiol 4:, 80. [CrossRef][PubMed]
    [Google Scholar]
  136. Tree J. J., Granneman S., McAteer S. P., Tollervey D., Gally D. L.. ( 2014;). Identification of bacteriophage-encoded anti-sRNAs in pathogenic Escherichia coli. . Mol Cell 55:, 199–213. [CrossRef][PubMed]
    [Google Scholar]
  137. Tyler J. S., Beeri K., Reynolds J. L., Alteri C. J., Skinner K. G., Friedman J. H., Eaton K. A., Friedman D. I.. ( 2013;). Prophage induction is enhanced and required for renal disease and lethality in an EHEC mouse model. . PLoS Pathog 9:, e1003236. [CrossRef][PubMed]
    [Google Scholar]
  138. Tyrrell G. J., Ramotar K., Toye B., Boyd B., Lingwood C. A., Brunton J. L.. ( 1992;). Alteration of the carbohydrate binding specificity of verotoxins from Gal alpha 1–4Gal to GalNAc beta 1–3Gal alpha 1–4Gal and vice versa by site-directed mutagenesis of the binding subunit. . Proc Natl Acad Sci U S A 89:, 524–528. [CrossRef][PubMed]
    [Google Scholar]
  139. Unkmeir A., Schmidt H.. ( 2000;). Structural analysis of phage-borne stx genes and their flanking sequences in Shiga toxin-producing Escherichia coli and Shigella dysenteriae type 1 strains. . Infect Immun 68:, 4856–4864. [CrossRef][PubMed]
    [Google Scholar]
  140. Vareille M., de Sablet T., Hindré T., Martin C., Gobert A. P.. ( 2007;). Nitric oxide inhibits Shiga-toxin synthesis by enterohemorrhagic Escherichia coli. . Proc Natl Acad Sci U S A 104:, 10199–10204. [CrossRef][PubMed]
    [Google Scholar]
  141. Wagner P. L., Acheson D. W. K., Waldor M. K.. ( 1999;). Isogenic lysogens of diverse Shiga toxin 2-encoding bacteriophages produce markedly different amounts of Shiga toxin. . Infect Immun 67:, 6710–6714.[PubMed]
    [Google Scholar]
  142. Wagner P. L., Neely M. N., Zhang X., Acheson D. W. K., Waldor M. K., Friedman D. I.. ( 2001;). Role for a phage promoter in Shiga toxin 2 expression from a pathogenic Escherichia coli strain. . J Bacteriol 183:, 2081–2085. [CrossRef][PubMed]
    [Google Scholar]
  143. Węgrzyn G., Nowiki D., Maciąg-Dorszyńska M., Bloch S., Nejman-Faleńczyk B., Kobiela W., Herman-Antosiewicz A., Łos M., Węgrzyn A., Szalewska-Pałasz A.. ( 2014;). Impacts of bacterial host physiology on the Stx phage development. . Presented at EMBO Conference on Viruses of Microbes III: Structure and Function – From Molecules to Communities, 14–18 July, Zurich.
  144. Weinstein D. L., Jackson M. P., Samuel J. E., Holmes R. K., O’Brien A. D.. ( 1988;). Cloning and sequencing of a Shiga-like toxin type II variant from Escherichia coli strain responsible for edema disease of swine. . J Bacteriol 170:, 4223–4230.[PubMed]
    [Google Scholar]
  145. Wong C. S., Jelacic S., Habeeb R. L., Watkins S. L., Tarr P. I.. ( 2000;). The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157 : H7 infections. . N Engl J Med 342:, 1930–1936. [CrossRef][PubMed]
    [Google Scholar]
  146. Xu X., McAteer S. P., Tree J. J., Shaw D. J., Wolfson E. B. K., Beatson S. A., Roe A. J., Allison L. J., Chase-Topping M. E.. & other authors ( 2012;). Lysogeny with Shiga toxin 2-encoding bacteriophages represses type III secretion in enterohemorrhagic Escherichia coli. . PLoS Pathog 8:, e1002672. [CrossRef][PubMed]
    [Google Scholar]
  147. Yamamoto T., Kojio S., Taneike I., Nakagawa S., Iwakura N., Wakisaka-Saito N.. ( 2003;). 60Co irradiation of Shiga toxin (Stx)-producing Escherichia coli induces Stx phage. . FEMS Microbiol Lett 222:, 115–121. [CrossRef][PubMed]
    [Google Scholar]
  148. Yee A. J., De Grandis S., Gyles C. L.. ( 1993;). Mitomycin-induced synthesis of a Shiga-like toxin from enteropathogenic Escherichia coli H.I.8. . Infect Immun 61:, 4510–4513.[PubMed]
    [Google Scholar]
  149. Yue W.-F., Du M., Zhu M.-J.. ( 2012;). High temperature in combination with UV irradiation enhances horizontal transfer of stx2 gene from E. coli O157 : H7 to non-pathogenic E. coli. . PLoS One 7:, e31308. [CrossRef][PubMed]
    [Google Scholar]
  150. Zhang W., Bielaszewska M., Kuczius T., Karch H.. ( 2002;). Identification, characterization, and distribution of a Shiga toxin 1 gene variant (stx1c) in Escherichia coli strains isolated from humans. . J Clin Microbiol 40:, 1441–1446. [CrossRef][PubMed]
    [Google Scholar]
  151. Zhang X., McDaniel A. D., Wolf L. E., Keusch G. T., Waldor M. K., Acheson D. W.. ( 2000;). Quinolone antibiotics induce Shiga toxin-encoding bacteriophages, toxin production, and death in mice. . J Infect Dis 181:, 664–670. [CrossRef][PubMed]
    [Google Scholar]
  152. Zhang Y., Laing C., Zhang Z., Hallewell J., You C., Ziebell K., Johnson R. O., Kropinski A. M., Thomas J. E.. & other authors ( 2010;). Lineage and host source are both correlated with levels of Shiga toxin 2 production by Escherichia coli O157 : H7. . Appl Environ Microbiol 76:, 474–482. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000003
Loading
/content/journal/micro/10.1099/mic.0.000003
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error