1887

Abstract

is a Gram-positive bacterium that is easy to manipulate genetically. Several methods for genome engineering have been developed that helped to extend our understanding of how the cell operates. Consequently, the bacterium has become one of the best-studied organisms. has also been engineered for industrial applications. Moreover, great progress has been achieved in promoter engineering to improve the performance of production strains. To expand the toolbox for engineering , we have constructed a system for the inducer-free activation of gene expression. The system relies on spontaneous mutational activation of a cryptic promoter and selection-driven enrichment of bacteria harbouring the mutated promoter. The synthetic promoter is cryptic due to a perfect direct repeat, separating the binding motifs of the RNA polymerase housekeeping sigma factor. The promoter can be fused to genes for industrial applications and to a growth-promoting gene that, upon mutational activation of the promoter, allows enrichment of the engineered bacteria due to a selective growth advantage.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000001
2015-02-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/2/354.html?itemId=/content/journal/micro/10.1099/mic.0.000001&mimeType=html&fmt=ahah

References

  1. Belitsky B. R., Sonenshein A. L.. ( 1998;). Role and regulation of Bacillus subtilis glutamate dehydrogenase genes. . J Bacteriol 180:, 6298–6305.[PubMed]
    [Google Scholar]
  2. Blazeck J., Alper H. S.. ( 2013;). Promoter engineering: recent advances in controlling transcription at the most fundamental level. . Biotechnol J 8:, 46–58. [CrossRef][PubMed]
    [Google Scholar]
  3. Brautaset T., Lale R., Valla S.. ( 2009;). Positively regulated bacterial expression systems. . Microb Biotechnol 2:, 15–30. [CrossRef][PubMed]
    [Google Scholar]
  4. Buescher J. M., Liebermeister W., Jules M., Uhr M., Muntel J., Botella E., Hessling B., Kleijn R. J., Le Chat L.. & other authors ( 2012;). Global network reorganization during dynamic adaptations of Bacillus subtilis metabolism. . Science 335:, 1099–1103. [CrossRef][PubMed]
    [Google Scholar]
  5. Burkholder P. R., Giles N. H. Jr. ( 1947;). Induced biochemical mutations in Bacillus subtilis. . Am J Bot 34:, 345–348. [CrossRef][PubMed]
    [Google Scholar]
  6. Commichau F. M., Herzberg C., Tripal P., Valerius O., Stülke J.. ( 2007a;). A regulatory protein–protein interaction governs glutamate biosynthesis in Bacillus subtilis: the glutamate dehydrogenase RocG moonlights in controlling the transcription factor GltC. . Mol Microbiol 65:, 642–654. [CrossRef][PubMed]
    [Google Scholar]
  7. Commichau F. M., Wacker I., Schleider J., Blencke H. M., Reif I., Tripal P., Stülke J.. ( 2007b;). Characterization of Bacillus subtilis mutants with carbon source-independent glutamate biosynthesis. . J Mol Microbiol Biotechnol 12:, 106–113. [CrossRef][PubMed]
    [Google Scholar]
  8. Commichau F. M., Gunka K., Landmann J. J., Stülke J.. ( 2008;). Glutamate metabolism in Bacillus subtilis: gene expression and enzyme activities evolved to avoid futile cycles and to allow rapid responses to perturbations of the system. . J Bacteriol 190:, 3557–3564. [CrossRef][PubMed]
    [Google Scholar]
  9. Commichau F. M., Alzinger A., Sande R., Bretzel W., Meyer F. M., Chevreux B., Wyss M., Hohmann H. P., Prágai Z.. ( 2014;). Overexpression of a non-native deoxyxylulose-dependent vitamin B6 pathway in Bacillus subtilis for the production of pyridoxine. . Metab Eng 25:, 38–49. [CrossRef][PubMed]
    [Google Scholar]
  10. Diethmaier C., Pietack N., Gunka K., Wrede C., Lehnik-Habrink M., Herzberg C., Hübner S., Stülke J.. ( 2011;). A novel factor controlling bistability in Bacillus subtilis: the YmdB protein affects flagellin expression and biofilm formation. . J Bacteriol 193:, 5997–6007. [CrossRef][PubMed]
    [Google Scholar]
  11. Flores A. R., Olsen R. J., Wünsche A., Kumaraswami M., Shelburne S. A. III, Carroll R. K., Musser J. M.. ( 2013;). Natural variation in the promoter of the gene encoding the Mga regulator alters host-pathogen interactions in group a Streptococcus carrier strains. . Infect Immun 81:, 4128–4138. [CrossRef][PubMed]
    [Google Scholar]
  12. Guérout-Fleury A. M., Shazand K., Frandsen N., Stragier P.. ( 1995;). Antibiotic-resistance cassettes for Bacillus subtilis. . Gene 167:, 335–336. [CrossRef][PubMed]
    [Google Scholar]
  13. Gunka K., Tholen S., Gerwig J., Herzberg C., Stülke J., Commichau F. M.. ( 2012;). A high-frequency mutation in Bacillus subtilis: requirements for the decryptification of the gudB glutamate dehydrogenase gene. . J Bacteriol 194:, 1036–1044. [CrossRef][PubMed]
    [Google Scholar]
  14. Gunka K., Stannek L., Care R. A., Commichau F. M.. ( 2013;). Selection-driven accumulation of suppressor mutants in Bacillus subtilis: the apparent high mutation frequency of the cryptic gudB gene and the rapid clonal expansion of gudB+ suppressors are due to growth under selection. . PLoS ONE 8:, e66120. [CrossRef][PubMed]
    [Google Scholar]
  15. Herzberg C., Weidinger L. A., Dörrbecker B., Hübner S., Stülke J., Commichau F. M.. ( 2007;). SPINE: a method for the rapid detection and analysis of protein–protein interactions in vivo. . Proteomics 7:, 4032–4035. [CrossRef][PubMed]
    [Google Scholar]
  16. Juhas M., Reuß D. R., Zhu B., Commichau F. M.. ( 2014;). Bacillus subtilis and Escherichia coli essential genes and minimal cell factories after one decade of genome engineering. . Microbiology 160:, 2341–2351. [CrossRef][PubMed]
    [Google Scholar]
  17. Kumpfmüller J., Kabisch J., Schweder T.. ( 2013;). An optimized technique for rapid genome modifications of Bacillus subtilis. . J Microbiol Methods 95:, 350–352. [CrossRef][PubMed]
    [Google Scholar]
  18. Kunst F., Rapoport G.. ( 1995;). Salt stress is an environmental signal affecting degradative enzyme synthesis in Bacillus subtilis. . J Bacteriol 177:, 2403–2407.[PubMed]
    [Google Scholar]
  19. Lewis P. J., Marston A. L.. ( 1999;). GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. . Gene 227:, 101–109. [CrossRef][PubMed]
    [Google Scholar]
  20. Manabe K., Kageyama Y., Morimoto T., Shimizu E., Takahashi H., Kanaya S., Ara K., Ozaki K., Ogasawara N.. ( 2013;). Improved production of secreted heterologous enzyme in Bacillus subtilis strain MGB874 via modification of glutamate metabolism and growth conditions. . Microb Cell Fact 12:, 18. [CrossRef][PubMed]
    [Google Scholar]
  21. Martin P., Makepeace K., Hill S. A., Hood D. W., Moxon E. R.. ( 2005;). Microsatellite instability regulates transcription factor binding and gene expression. . Proc Natl Acad Sci U S A 102:, 3800–3804. [CrossRef][PubMed]
    [Google Scholar]
  22. McKenney P. T., Driks A., Eichenberger P.. ( 2013;). The Bacillus subtilis endospore: assembly and functions of the multilayered coat. . Nat Rev Microbiol 11:, 33–44. [CrossRef][PubMed]
    [Google Scholar]
  23. Nicolas P., Mäder U., Dervyn E., Rochat T., Leduc A., Pigeonneau N., Bidnenko E., Marchadier E., Hoebeke M.. & other authors ( 2012;). Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. . Science 335:, 1103–1106. [CrossRef][PubMed]
    [Google Scholar]
  24. Perkins J. B., Sloma A., Hermann T., Theriault K., Zachgo E., Erdenberger T., Hannett N., Chatterjee N. P., Williams V. II. & other authors ( 1999;). Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. . J Ind Microbiol Biotechnol 22:, 8–18. [CrossRef]
    [Google Scholar]
  25. Radeck J., Kraft K., Bartels J., Cikovic T., Dürr F., Emenegger J., Kelterborn S., Sauer C., Fritz G.. & other authors ( 2013;). The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. . J Biol Eng 7:, 29. [CrossRef][PubMed]
    [Google Scholar]
  26. Raschle T., Amrhein N., Fitzpatrick T. B.. ( 2005;). On the two components of pyridoxal 5′-phosphate synthase from Bacillus subtilis. . J Biol Chem 280:, 32291–32300. [CrossRef][PubMed]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T.. ( 1989;). Molecular Cloning: a Laboratory Manual. Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory;.
    [Google Scholar]
  28. Schallmey M., Singh A., Ward O. P.. ( 2004;). Developments in the use of Bacillus species for industrial production. . Can J Microbiol 50:, 1–17. [CrossRef][PubMed]
    [Google Scholar]
  29. Schilling O., Frick O., Herzberg C., Ehrenreich A., Heinzle E., Wittmann C., Stülke J.. ( 2007;). Transcriptional and metabolic responses of Bacillus subtilis to the availability of organic acids: transcription regulation is important but not sufficient to account for metabolic adaptation. . Appl Environ Microbiol 73:, 499–507. [CrossRef][PubMed]
    [Google Scholar]
  30. Sonenshein A. L., Hoch J. A., Losick R. A.. (editors) ( 2002;). Bacillus subtilis and its Closest Relatives: From Genes to Cells. Washington, DC:: American Society for Microbiology;. [CrossRef]
    [Google Scholar]
  31. Stannek L., Egelkamp R., Gunka K., Commichau F. M.. ( 2014;). Monitoring intraspecies competition in a bacterial cell population by cocultivation of fluorescently labelled strains. . J Vis Exp 18:, e51196.[PubMed]
    [Google Scholar]
  32. Stülke J., Martin-Verstraete I., Zagorec M., Rose M., Klier A., Rapoport G.. ( 1997;). Induction of the Bacillus subtilis ptsGHI operon by glucose is controlled by a novel antiterminator, GlcT. . Mol Microbiol 25:, 65–78. [CrossRef][PubMed]
    [Google Scholar]
  33. Thiele T., Steil L., Gebhard S., Scharf C., Hammer E., Brigulla M., Lubenow N., Clemetson K. J., Völker U., Greinacher A.. ( 2007;). Profiling of alterations in platelet proteins during storage of platelet concentrates. . Transfusion 47:, 1221–1233. [CrossRef][PubMed]
    [Google Scholar]
  34. Vinces M. D., Legendre M., Caldara M., Hagihara M., Verstrepen K. J.. ( 2009;). Unstable tandem repeats in promoters confer transcriptional evolvability. . Science 324:, 1213–1216. [CrossRef][PubMed]
    [Google Scholar]
  35. Vogl T., Ruth C., Pitzer J., Kickenweiz T., Glieder A.. ( 2014;). Synthetic core promoters for Pichia pastoris. . ACS Synth Biol 3:, 188–191. [CrossRef][PubMed]
    [Google Scholar]
  36. Wach A.. ( 1996;). PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. . Yeast 12:, 259–265. [CrossRef][PubMed]
    [Google Scholar]
  37. Wacker I., Ludwig H., Reif I., Blencke H. M., Detsch C., Stülke J.. ( 2003;). The regulatory link between carbon and nitrogen metabolism in Bacillus subtilis: regulation of the gltAB operon by the catabolite control protein CcpA. . Microbiology 149:, 3001–3009. [CrossRef][PubMed]
    [Google Scholar]
  38. Zhou K., Aertsen A., Michiels C. W.. ( 2014;). The role of variable DNA tandem repeats in bacterial adaptation. . FEMS Microbiol Rev 38:, 119–141. [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000001
Loading
/content/journal/micro/10.1099/mic.0.000001
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error